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Structured representations and optimization in NLP

or, StroopNLP
discrete structure continuous structure
(Niculae et al., 2018) (Troshin et al., 2023)
(Niculae et al., 2020) (Tokarchuk et al., 2025a)
(Correia et al., 2020) (Tokarchuk et al., 2026)
(Niculae et al., 2025)
contributes to
controllability using long contexts retrieving
(Troshin et al., 2025a) (Mohammed et al., 2024) similar contexts
(Troshin et al., 2025b) (Mohammed et al., 2025) (Nachesa et al., 2025)
(Mohammed et al., 2026) (Tokarchuk et al., 2025b)
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Transformer LM: Next-word prediction
(Vaswani et al., 2017)
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Transformer LM: Next-word prediction
(Vaswani et al., 2017)

Yer1

the paving

OQ....QtOhfeRd
@ O/O @ %.. aQaQaO

/////

sous les pavés la plage EN under the
Yt

he =fo(y1,...,yt)
h; is a good representation of the entire contexty; . ¢

eXP<ht:Wpavmg>

P(yt+1 = paving) = ey explhewy)

3/30



Retrieving contexts by hidden state

k-nearest neighbors by d(h;, h)

Helps understand decisions and
mistakes

(]
e ,
d Yi,...t Yt
.1 Lesable stabilise les pavés autobloquants EN The sand stabilizes the interlocking  paving
.8 Ils se promenent sur les pavés pour nostalgie. EN They take a walk onthe  cobblestones
9

Ces pavés ont l'air d’avoir été nettoyés EN These  cobblestones
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k-nearest neighbors language models
(Khandelwal et al., 2020; Khandelwal et al., 2021)

® cobblestones kNN classifier: predict most voted
paving @  ht word from similar contexts.

®
dobblestones @
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k-nearest neighbors language models
(Khandelwal et al., 2020; Khandelwal et al., 2021)

transformers with kNN
® better accuracy

P ® domain adaptation
e, ® but, high compute cost
pim(Ver1 =Y | Y1) exp(ht, wy) (linearin h¢)
pkNN(yt—l-l =Yy ’ yl:t) X Z vote(h, ht) (non—linear)

héeneighbors of h; with label y

p = (1= X)pim + APk

vote can be {0, 1} or distance-based; papers use latter

® cobblestones kNN classifier: predict most voted
paving ® ’:f word from similar contexts.
dobblestones ® kNN-LM, kNN-MT: augmenting
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Aside/Bonus: kNN-Whisper for ASR
The Whisper model for ASR is also a conditional LM.

Augmenting it with kNN helps! (Nachesa et al., 2025)

word error rate

15
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Continuous-output LM
(Kumar et al., 2019)

Standard LM obijective: classification E]

—

|0g P(yt+1 =Yy | Y1:t) - <hta Wy> —|Og Z eXp(ht, Wy/> l l
y/
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Continuous-output LM
(Kumar et al., 2019)

Standard LM obijective: classification E]

|0g P(yt+1 =Yy | Y1:t) - <hta Wy> —|Og Z eXp(ht, Wy/> l l
y/

Continuous LM objective: regression

log P(Yt+1 = Wy | y1.t) = (ht, wy) — log C

Langevin probabilistic model on Sy

train: encourage h; close to w,,

test: retrieve nearest-neighbor embeddings
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Continuous-output machine translation: embedding choice

(Tokarchuk et al., 2024; Tokarchuk et al., 2026)

model and w ro-en BLEU; de-en BLEU;
discrete 31.7 39.3
continuous, pretrained w 29.0 32.9

(Romanian-English WMT16, transformer-base, embedding size 128.)
(English-German WMT19, transformer-big, embedding size 1024.)

(bold best continuous model)
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Analysis: geometry, distribution by frequency

=
o

o o
(o) N0}

cosine similarity

©
I

ro-en
pretrained 1st nearest
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—— uniform 1st nearest
---- uniform 5th nearest
|
0 10000 20000

frequency rank

9/30



Dispersion on the sphere
Optimal dispersion according to Tammes (1930),

max rT‘;,” d(w;, w))
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Dispersion on the sphere
Optimal dispersion according to Tammes (1930),

max rT‘;,” d(w;, w))

Measures:
® Minimum distance: min;.; d(w;, w;)
® Spherical variance: 1 — ||u| where p =) ", w;/n

Related problems:
e Thomson dispersion: electrostatic charges
® Spherical codes (quantizing the sphere)
® Sphere packing / the kissing problem

Despite symmetry, exact solution generally unknown.
We want to trade off dispersion with a task loss:

L(W) + aR(W)
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Riemannian optimizationon S,

VF(w)

Scary math and notation but simple intuition:
walk along the surface in the direction of the gradient.

w't = Exp,(grad F(w))
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Useful measures are not necessarily optimization-friendly

min. dist. (Tammes objective) spherical variance

S
gradwk Rrammes(W) = 0 k

for almost all k except the two closest ones. Eucl. gradients are normal;
so all Riemannian gradients are 0.

RTammes(W) = = I’gijn d(W,', Wj)
Rvar(w) = l - ‘
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Common approaches in literature

per-point min distance: kernel style:
(Mettes et al., 2019; Z. Wang et al., 2021) minimum hyperspherical energy: (Liu et al.,
1 2018; Gautam et al., 2013; Liu et al., 2021; T. Wang
Rum(W) = - Z T;P d(w;, w;) et al., 2020; Thomson, 1904)
! 1
(Sablayrolles et al., 2019; Leonenko, 1987) RuHE & = n(n — 1) g k(W,-, Wj)

1 )
RioLeo(W) = =~ _log min d(w;, w)
i

13/30



Common approaches in literature

per-point min distance: kernel style:
(Mettes et al., 2019; Z. Wang et al., 2021) minimum hyperspherical energy: (Liu et al.,
1 2018; Gautam et al., 2013; Liu et al., 2021; T. Wang
Rum(W) = - Z T;P d(w;, w;) et al., 2020; Thomson, 1904)
! 1
(Sablayrolles et al., 2019; Leonenko, 1987) RuHE & = n(n — 1) g k(W,-, Wj)

1 )
RioLeo(W) = =~ _log min d(w;, w)
i

13/30



Common approaches in literature

Quadratic complexity O(mn?)

per-point min distance: kernel style:
(Mettes et al., 2019; Z. Wang et al., 2021) minimum hyperspherical energy: (Liu et al.,
1 2018; Gautam et al., 2013; Liu et al., 2021; T. Wang
Rum(W) = - Z T;P d(w;, w;) et al., 2020; Thomson, 1904)
! 1
(Sablayrolles et al., 2019; Leonenko, 1987) RuHE & = n(n — 1) g k(W,-, Wj)

1 )
RioLeo(W) = =~ _log min d(w;, w)
i

13/30



Common approaches in literature

Quadratic complexity O(mn?)

per-point min distance: kernel style:
(Mettes et al., 2019; Z. Wang et al., 2021) minimum hyperspherical energy: (Liu et al.,
1 2018; Gautam et al., 2013; Liu et al., 2021; T. Wang
Rum(W) = - Z T;P d(w;, w;) et al., 2020; Thomson, 1904)
! 1
(Sablayrolles et al., 2019; Leonenko, 1987) RurE & = n(n — 1) g k(W,-, Wj)

1 )
RioLeo(W) = =~ _log min d(w;, w)
i

We ShOW: RTammeS < RMM S RKOI_eO - l

13/30



Common approaches in literature

Quadratic complexity O(mn?)

per-point min distance: kernel style:
(Mettes et al., 2019; Z. Wang et al., 2021) minimum hyperspherical energy: (Liu et al.,
1 2018; Gautam et al., 2013; Liu et al., 2021; T. Wang
Rym(W) = —= E mind(w;, w; et al., 2020; Thomson, 1904)
MM() nl,j;éi (Ia j)
1
R = — k(w;, w;
(Sablayrolles et al., 2019; Leonenko, 1987) il n(n —-1) zi: ( b })
7]
1 . . .
RkoLeo(W) = - g log o d(wj, w;)  We show: Ryy  is the maximum mean
: J#
]

discrepancy between the empirical
measure W and the uniform measure on

We ShOW: RTammeS < RMM S RKOI_eO - l
the sphere.
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Sliced dispersion
(Bonet et al., 2023; Tokarchuk et al., 2025a)

Observation: on S;, optimally dispersed
configurations are some rotation of:
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Sliced dispersion
(Bonet et al., 2023; Tokarchuk et al., 2025a)

Observation: on Sy, optimally dispersed  Given some suboptimal configuration, we
configurations are some rotation of: can define its distance to the closest
dispersed one:

Intuition: sort angles;
map 1-to-1 around mean.
Computation: O(n + sort(n))).
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Sliced dispersionon S,

Slicing along any great circle should
preserve dispersion on average.

Oz Oprojswm(z) /?\Rlemanman
¢ update

Rsliced:
expectation over great circles (p, q)
of distance to optimal 1d configuration

Complexity:

O(mn) to project to great circle
(O(n) if axis-aligned)
+0(sort(n)) to disperse.
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Continuous-output machine translation: embedding choice

(Tokarchuk et al., 2024; Tokarchuk et al., 2026)

model and w ro-en BLEU; de-en BLEU;
discrete 31.7 39.3
continuous, pretrained w 29.0 32.9
continuous, random unif w 28.8 33.9
continuous, dispersed 30.1 36.6

(Romanian-English WMT16, transformer-base, embedding size 128.)
(English-German WMT19, transformer-big, embedding size 1024.)

(bold best continuous model)
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Continuous-output machine translation: embedding choice

(Tokarchuk et al., 2024; Tokarchuk et al., 2026)

model and w ro-en BLEU; de-en BLEU;
discrete 31.7 39.3
discrete dispersed 324 39.2
continuous, pretrained w 29.0 32.9
continuous, random unif w 28.8 33.9
continuous, dispersed 30.1 36.6

(Romanian-English WMT16, transformer-base, embedding size 128.)
(English-German WMT19, transformer-big, embedding size 1024.)

(bold best continuous model)
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From CONMT to K\NN-MT

[ }
o ht
()
( }
[ )
°
CoNMT KNN-MT

Both: retrieve next word through lookup of nearest key vector
keys word embeddingsonS,, context representations on R"”

n~ 10* 10°-107

Due to higher n, we must use efficient approximate nearest neighbors methods.
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Approximate nearest neighbor retrieval

Inverse vector file + product quantization (IVFPQ, Johnson et al., 2019): a SOTA method

IVF: cluster the keys using k-means;
treat each Voronoi cell as a separate
smaller (centered) data store.

PQ: inside each cell, split the m
dimensions into subspaces and
quantize them to 8 bit per key.
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Approximate nearest neighbor retrieval

Inverse vector file + product quantization (IVFPQ, Johnson et al., 2019): a SOTA method

IVF: cluster the keys using k-means;
treat each Voronoi cell as a separate
smaller (centered) data store.

PQ: inside each cell, split the m
dimensions into subspaces and
quantize them to 8 bit per key.
At lookup time:
¢ find the npropes closest centroids
® search exhaustively within their
Voronoi cells.
Hypothesis: IVFPQ performs better
with dispersed keys.
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Angular dispersion and isotropy

(Tokarchuk et al., 2025b)

Given a set of hidden states h € R™, consider
the dispersion of their directions

h/|\h|| € Sp.

Intuition: Distribution of h spherically
symmetric around origin
implies angular dispersion.
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Synthetic validation
Generative process.
Draw n = 10M directions from
mixture of 5 Power Sphericals on Syg,
with varying concentration.

Assign to each direction a uniform length
on [1,100]
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with varying concentration. measure over 10K random queries:
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Synthetic validation

Generative process. Evaluation.
Draw n = 10M directions from Fit IVFPQ datastore with 2048 cells, 8
mixture of 5 Power Sphericals on Syg, neighbors, batch size 10, npropes = 32, and
with varying concentration. measure over 10K random queries:
. N2
Assign to each direction a uniform length e imbalance factor IF = K 31, (%)
on [1,100] e throughput (requests per second)
4
e .13.8 1453 325
® 103 J
o
g 102
45.9 151.6
112.6
10 "0 N1 N2 n3
10 10 10 10

Concentration
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Can we make hidden states dispersed?

Not parameters, but network outputs:
ht - fg(yh CIEa 7yf)

Transformers are trained on minibatches,
we don’t see all contexts at once.

Doubly-stochastic sliced dispersion:
Each training update disperses a subset of
the collection along a random great circle.
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Can we make hidden states dispersed?

Not parameters, but network outputs:
ht - f@(yl, cee 7yf)

Transformers are trained on minibatches,
we don’t see all contexts at once.

S
©

---- wj/o dispersion
—— sliced regularizer

%
i

Spherical Variance
o
()]

Doubly-stochastic sliced dispersion: 500 1000 1500 2000 2500 3000 3500 4000
Each training update disperses a subset of Steps
the collection along a random great circle.
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Dispersed kNN-MT

Romanian-English WMT16, transformer-base, m = 128.

ks
T 105
£
$
E 10°
© -
5 L~ IF=68.3 ~--- k-NN MT (baseline)
S [ —— k-NN MT-D (w/ dispersion)
n ]
0 500 1000 1500 2000

inverted list id (sorted)
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Dispersed kNN-MT

Romanian-English WMT16, transformer-base, m = 128.

% 105 4

h=

g

£ 107 - e

5 X ~"TF=68.3 --- k-NN MT (baseline)

S [ —— k-NN MT-D (w/ dispersion)

0 500 1000 1500 2000
inverted list id (sorted)

model #probes BLEU(;) COMET() tok/s(
baseline - 315 78.95 75
KNN MT 32 32.4 79.89 12
kNN MT-D 32 32.6 79.91 53
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Dispersed kNN-MT

Romanian-English WMT16, transformer-base, m = 128.

% 105

f=t

g

£ 10° - e

5 X ~"TF=68.3 --- k-NN MT (baseline)

S [ —— k-NN MT-D (w/ dispersion)

0 500 1000 1500 2000
inverted list id (sorted)

model #probes BLEU(;) COMET tok/sm
baseline - 31.5 78.95 75
KNN MT 32 324 79.89 12
KNN MT 8 32.2 79.69 28
kNN MT-D 32 32.6 79.91 53
kNN MT-D 8 32.6 79.93 63
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Continuous representations for efficient language models

kNN language models: dispersion: substantial improvements:
a powerful model, more a centuries-old problem speedups and accuracy boost
adaptable, more interpretable still relevant in modern ML. thanks to going back to basics.

(— also for speech recognition).

® cobblestones
aving @ he
cobblestones ®

112.6
10° 10* 102 10°
Concentration

[ ] °

Immediate perspectives:

e Seek alternatives to IVFPQ built directly for dispersion.
® Explore the spectrum between CoONMT and kNN-MT.

Long-term perspectives: Geometry of representations from single tokens to phrases;

“reasoning” over such structured / searchable spaces.
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F-measure
© © © o © o o
= N w N ()] [e)] ~

e
o

Analysis: errors by frequency

[ T

[Z2 Discrete Model
KA Pre-trained
| @@ Random Uniform

g

N=930

[10,100)
N=2941
Frequency Buckets

=100
N=60991

25/30



References |

Bonet, Clément et al. (2023). “Spherical Sliced-Wasserstein”. In: The Eleventh International Conference on Learning
Representations. URL: https://openreview.net/forum?id=jXQ0ipgMduU.

Correia, Gongalo et al. (2020). “Efficient marginalization of discrete and structured latent variables via sparsity”. In:
Advances in Neural Information Processing Systems.

Gautam, Simanta and Dmitry Vaintrob (2013). “A Novel Approach to the Spherical Codes Problem”. In: MIT,
Cambridge, MA, USA, Tech. Rep. URL: https://api.semanticscholar.org/CorpusID:12647839.

Johnson, Jeff, Matthijs Douze, and Hervé Jégou (2019). “Billion-scale similarity search with GPUs”. In: IEEE
Transactions on Big Data 7.3, pp. 535-547.

Khandelwal, Urvashi et al. (2020). “Generalization through Memorization: Nearest Neighbor Language Models”. In:
International Conference on Learning Representations. URL: https://openreview.net/forum?id=Hk1BjCEKvH.

Khandelwal, Urvashi et al. (2021). “Nearest Neighbor Machine Translation”. In: International Conference on Learning
Representations. URL: https://openreview.net/forum?id=7wCBOf J8hJM.

Kumar, Sachin and Yulia Tsvetkov (2019). “von Mises-Fisher Loss for Training Sequence to Sequence Models with
Continuous Outputs”. In: International Conference on Learning Representations. URL:
https://openreview.net/forum?id=rJ1DnoA5Y7.

Leonenko, Nikolai N (1987). “Sample estimate of the entropy of a random vector”. In: Problemy Peredachi
Informatsii 23.2, pp. 9-16.

26/30


https://openreview.net/forum?id=jXQ0ipgMdU
https://api.semanticscholar.org/CorpusID:12647839
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=rJlDnoA5Y7

References I

Liu, Weiyang et al. (2018). “Learning towards Minimum Hyperspherical Energy”. In: Neural Information Processing
Systems. URL: https://api.semanticscholar.org/CorpusID:43921092.

Liu, Weiyang et al. (13-15 Apr 2021). “Learning with Hyperspherical Uniformity”. In: Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics. Ed. by Arindam Banerjee and Kenji Fukumizu.
Vol. 130. Proceedings of Machine Learning Research. PMLR, pp. 1180-1188. URL:
https://proceedings.mlr.press/v130/1iu21d.html.

Mettes, Pascal, Elise van der Pol, and Cees G M Snoek (2019). “Hyperspherical Prototype Networks”. In: Advances in
Neural Information Processing Systems.

Mohammed, Wafaa and Vlad Niculae (2025). “Context-Aware or Context-Insensitive? Assessing LLMs’ Performance
in Document-Level Translation”. In: Proceedings of Machine Translation Summit XX: Volume 1. 1SBN:
978-2-9701897-0-1. URL: https://aclanthology.org/2025.mtsummit-1.10/.

—  (2024). “On Measuring Context Utilization in Document-Level MT Systems”. In: Findings of the ACL: EACL 2024.
URL:https://aclanthology.org/2024.findings-eacl.113/.

Mohammed, Wafaa, Vlad Niculae, and Chrysoula Zerva (2026). “Unlocking Latent Discourse Translation in LLMs
Through Quality-Aware Decoding”. In: 19th Conference of the European Chapter of the Association for Computational
Linguistics. URL: https://openreview.net/forum?id=mbnU8WeG0b.

27/30


https://api.semanticscholar.org/CorpusID:43921092
https://proceedings.mlr.press/v130/liu21d.html
https://aclanthology.org/2025.mtsummit-1.10/
https://aclanthology.org/2024.findings-eacl.113/
https://openreview.net/forum?id=mbnU8WeGOb

References Il

Nachesa, Maya K. and Vlad Niculae (Apr. 2025). “kNN For Whisper And Its Effect On Bias And Speaker Adaptation”. In:
Findings of the Association for Computational Linguistics: NAACL 2025. Ed. by Luis Chiruzzo, Alan Ritter, and Lu Wang.
Albuquerque, New Mexico: Association for Computational Linguistics, pp. 6621-6627. ISBN: 979-8-89176-195-7. DOI:

10.18653/v1/2025.findings-naacl.369. URL: https://aclanthology.org/2025.findings-naacl.369/.
Niculae, Vlad and André FT Martins (2020). “LP-SparseMAP: Differentiable relaxed optimization for sparse
structured prediction.”. In: Proc. ICML.

Niculae, Vlad et al. (2025). “Discrete Latent Structure in Neural Networks”. In: Foundations and Trends® in Signal
Processing 19.2, pp. 99-211. ISSN: 1932-8346. DOI: 10.1561/2000000134. URL:
http://dx.doi.org/10.1561/2000000134.

Niculae, Vlad et al. (2018). “SparseMAP: Differentiable sparse structured inference”. In: Proc. ICML.

Sablayrolles, Alexandre et al. (2019). “Spreading vectors for similarity search”. In: International Conference on
Learning Representations. URL: https://openreview.net/forum?id=SkGuG2R5tm.

Tammes, Pieter Merkus Lambertus (1930). “On the origin of number and arrangement of the places of exit on the
surface of pollen-grains”. English. Relation: http://www.rug.nl/ Rights: De Bussy. PhD thesis. University of
Groningen.

28/30


https://doi.org/10.18653/v1/2025.findings-naacl.369
https://aclanthology.org/2025.findings-naacl.369/
https://proceedings.mlr.press/v119/niculae20a.html
https://proceedings.mlr.press/v119/niculae20a.html
https://doi.org/10.1561/2000000134
http://dx.doi.org/10.1561/2000000134
https://arxiv.org/abs/1802.04223
https://openreview.net/forum?id=SkGuG2R5tm

References IV

Thomson, JJ (1904). “On the structure of the atom: an investigation of the stability and periods of oscillation of a
number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the
results to the theory of atomic structure”. In: The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 7.39, pp. 237-265. poI: 10.1080/14786440409463107. eprint:
https://doi.org/10.1080/14786440409463107. URL: https://doi.org/10.1080/14786440409463107.

Tokarchuk, Evgeniia, Hua Chang Bakker, and Vlad Niculae (2025a). “Keep your distance: learning dispersed
embeddings on Sy,”. In: Transactions on Machine Learning Research. 1SSN: 2835-8856. URL:
https://openreview.net/forum?id=5JIQE6HcTd.

Tokarchuk, Evgeniia and Vlad Niculae (2024). “The Unreasonable Effectiveness of Random Target Embeddings for
Continuous-Output Neural Machine Translation”. In: Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers).
DOI: 10.18653/v1/2024 .naacl-short.56. URL: https://aclanthology.org/2024.naacl-short.56/.

Tokarchuk, Evgeniia, Sergey Troshin, and Vlad Niculae (2025b). “Angular Dispersion Accelerates k-Nearest
Neighbors Machine Translation”. In: Findings of the ACL: Empirical Methods in Natural Language Processing. URL:
https://openreview.net/forum?id=61JWxycZTa.

Tokarchuk, Evgeniia et al. (2026). “Representation Collapse in Machine Translation Through the Lens of Angular
Dispersion”. In: Findings of the ACL: 19th Conference of the European Chapter of the Association for Computational
Linguistics.

Troshin, Sergey and Vlad Niculae (2023). “Wrapped [3-gaussians with compact support for exact probabilistic
modeling on manifolds”. In: Transactions on Machine Learning Research.

29/30


https://doi.org/10.1080/14786440409463107
https://doi.org/10.1080/14786440409463107
https://doi.org/10.1080/14786440409463107
https://openreview.net/forum?id=5JIQE6HcTd
https://doi.org/10.18653/v1/2024.naacl-short.56
https://aclanthology.org/2024.naacl-short.56/
https://openreview.net/forum?id=6lJWxycZTa

References V

@ Troshin, Sergey, Vlad Niculae, and Antske Fokkens (2025a). “On the Low-Rank Parametrization of Reward Models
for Controlled Language Generation”. In: Transactions on Machine Learning Research. 1SSN: 2835-8856. URL:
https://openreview.net/forum?id=cjRsEGLT8B.

@ Troshin, Sergey et al. (2025b). “Control the Temperature: Selective Sampling for Diverse and High-Quality LLM
Outputs”. In: Second Conference on Language Modeling.

@ Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural information processing systems.
Vol. 30.

@ Wang, Tongzhou and Phillip Isola (13-18 Jul 2020). “Understanding Contrastive Representation Learning through
Alignment and Uniformity on the Hypersphere”. In: Proceedings of the 37th International Conference on Machine
Learning. Ed. by Hal Daumé Il and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR,
pp. 9929-9939. URL: https://proceedings.mlr.press/v119/wang20k.html.

@ Wang, Zhennan et al. (2021). MMA Regularization: Decorrelating Weights of Neural Networks by Maximizing the
Minimal Angles. arXiv: 2006 . 06527 [cs.LG].

30/30


https://openreview.net/forum?id=cjRsEGLT8B
https://proceedings.mlr.press/v119/wang20k.html
https://arxiv.org/abs/2006.06527

	Overview, context, vision.
	Continuous representations for efficient language models
	Conclusions
	References

