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Structured representations and optimization in NLP
or, StroopNLP

discrete structure
(Niculae et al., 2018)
(Niculae et al., 2020)
(Correia et al., 2020)
(Niculae et al., 2025)

continuous structure
(Troshin et al., 2023)

(Tokarchuk et al., 2025a)
(Tokarchuk et al., 2026)

contributes to

controllability
(Troshin et al., 2025a)
(Troshin et al., 2025b)

using long contexts
(Mohammed et al., 2024)
(Mohammed et al., 2025)
(Mohammed et al., 2026)

retrieving
similar contexts
(Nachesa et al., 2025)

(Tokarchuk et al., 2025b)
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Transformer LM: Next-word prediction
(Vaswani et al., 2017)

ht ∈ Rd

sous les pavés la plage EN under

the
yt

the

paving
ŷt+1

ht = fθ(y1, . . . , yt)

ht is a good representation of the entire context y1,...,t

P(yt+1 = paving) = exp⟨ht,wpaving⟩∑
v∈V exp⟨ht,wv⟩
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Retrieving contexts by hidden state

ht
k-nearest neighbors by d(ht, h)
Helps understand decisions and
mistakes

d y1,...,t yt+1

.1 Le sable stabilise les pavés autobloquants EN The sand stabilizes the interlocking paving

.8 Ils se promenent sur les pavés pour nostalgie. EN They take a walk on the cobblestones

.9 Ces pavés ont l’air d’avoir été nettoyés EN These cobblestones

4 / 30



k-nearest neighbors language models
(Khandelwal et al., 2020; Khandelwal et al., 2021)

ht
cobblestones

cobblestones

paving
kNN classifier: predict most voted
word from similar contexts.

kNN-LM, kNN-MT: augmenting
transformers with kNN

• better accuracy
• domain adaptation
• but, high compute cost

pLM(yt+1 = y | y1:t) ∝ exp⟨ht,wy⟩ (linear in ht)

pkNN(yt+1 = y | y1:t) ∝
∑

h∈neighbors of ht with label y
vote(h, ht) (non-linear)

p = (1 − λ)pLM + λpkNN

vote can be {0, 1} or distance-based; papers use latter
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Aside/Bonus: kNN-Whisper for ASR
The Whisper model for ASR is also a conditional LM.
Augmenting it with kNN helps! (Nachesa et al., 2025)

voxpopuli.en librispeech-clean librispeech-other commonvoice rixvox

5
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w
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Vanilla kNN
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Continuous-output LM

(Kumar et al., 2019)

Standard LM objective: classification

log P(yt+1 = y | y1:t) = ⟨ht,wy⟩−log
∑

y′
exp⟨ht,wy′⟩

Continuous LM objective: regression

log P(yt+1 = wy | y1:t) = ⟨ht,wy⟩ − log C

Langevin probabilistic model on Sd

train: encourage ht close towy

test: retrieve nearest-neighbor embeddings
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Continuous-output machine translation: embedding choice

(Tokarchuk et al., 2024; Tokarchuk et al., 2026)

model andw ro-en BLEU↑ de-en BLEU↑

discrete 31.7 39.3

discrete dispersed 32.4 39.2

continuous, pretrainedw 29.0 32.9

continuous, random unifw 28.8 33.9
continuous, dispersed 30.1 36.6

(Romanian-English WMT16, transformer-base, embedding size 128.)

(English-German WMT19, transformer-big, embedding size 1024.)

(bold best continuous model)
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Analysis: geometry, distribution by frequency
co

si
n
e
 s

im
ila

ri
ty

0 10000 20000
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1.0
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uniform 1st nearest

uniform 5th nearest
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Dispersion on the sphere
Optimal dispersion according to Tammes (1930),

max
W

min
i ̸=j

d(wi,wj)

Measures:
• Minimum distance: mini ̸=j d(wi,wj)

• Spherical variance: 1 − ∥µ∥ where µ =
∑

i wi/n

Related problems:
• Thomson dispersion: electrostatic charges
• Spherical codes (quantizing the sphere)
• Sphere packing / the kissing problem

Despite symmetry, exact solution generally unknown.
We want to trade off dispersion with a task loss:

L(W) + αR(W)
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Riemannian optimization on Sm

w

w+

grad F(w)

∇F(w)

Scary math and notation but simple intuition:
walk along the surface in the direction of the gradient.

w+ = Expw(grad F(w))

11 / 30



Useful measures are not necessarily optimization-friendly
min. dist. (Tammes objective)
RTammes(W) = −min

i ̸=j
d(wi,wj)

gradwk
RTammes(W) = 0

for almost all k except the two closest ones.

spherical variance

Rvar(W) = 1 −

∥∥∥∥∥∑
k
wk/n

∥∥∥∥∥
Eucl. gradients are normal;

so all Riemannian gradients are 0.

. .

.

..

.

.

. . .

.

..

.

.

.
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Common approaches in literature

Quadratic complexity O(mn2)

per-point min distance:

(Mettes et al., 2019; Z. Wang et al., 2021)

RMM(W) = −1
n
∑

i
min
j ̸=i

d(wi,wj)

(Sablayrolles et al., 2019; Leonenko, 1987)

RKoLeo(W) = −1
n
∑

i
logmin

j ̸=i
d(wi,wj)

We show: RTammes ≤ RMM ≤ RKoLeo − 1

kernel style:

minimum hyperspherical energy: (Liu et al.,
2018; Gautam et al., 2013; Liu et al., 2021; T. Wang
et al., 2020; Thomson, 1904)

RMHE,k =
1

n(n − 1)
∑
i ̸=j

k(wi,wj)

We show: RMHE,k is the maximum mean
discrepancy between the empirical
measureW and the uniform measure on
the sphere.
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Sliced dispersion
(Bonet et al., 2023; Tokarchuk et al., 2025a)

Observation: on S1, optimally dispersed
configurations are some rotation of:

X

.

..

.

Given some suboptimal configuration, we
can define its distance to the closest
dispersed one:

. .

..

.
X..

.

.

.

.

Intuition: sort angles;
map 1-to-1 around mean.
Computation: O(n + sort(n))).
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Sliced dispersion on Sm

Slicing along any great circle should
preserve dispersion on average.

Rsliced:
expectation over great circles (p, q)
of distance to optimal 1d configuration

Complexity:
O(mn) to project to great circle
(O(n) if axis-aligned)
+O(sort(n)) to disperse.

𝕡𝕢
Riemannian

update

15 / 30



Continuous-output machine translation: embedding choice

(Tokarchuk et al., 2024; Tokarchuk et al., 2026)

model andw ro-en BLEU↑ de-en BLEU↑

discrete 31.7 39.3

discrete dispersed 32.4 39.2

continuous, pretrainedw 29.0 32.9
continuous, random unifw 28.8 33.9
continuous, dispersed 30.1 36.6

(Romanian-English WMT16, transformer-base, embedding size 128.)

(English-German WMT19, transformer-big, embedding size 1024.)

(bold best continuous model)
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From CoNMT to kNN-MT

ht

CoNMT kNN-MT

Both: retrieve next word through lookup of nearest key vector

keys word embeddings on Sm context representations on Rm

n ≈ 104 105–107

Due to higher n, we must use efficient approximate nearest neighbors methods.

17 / 30



Approximate nearest neighbor retrieval

Inverse vector file + product quantization (IVFPQ, Johnson et al., 2019): a SOTA method

IVF: cluster the keys using k-means;
treat each Voronoi cell as a separate
smaller (centered) data store.
PQ: inside each cell, split the m
dimensions into subspaces and
quantize them to 8 bit per key.

At lookup time:
• find the nprobes closest centroids
• search exhaustively within their

Voronoi cells.

Hypothesis: IVFPQ performs better
with dispersed keys.
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Angular dispersion and isotropy

(Tokarchuk et al., 2025b)

Given a set of hidden states h ∈ Rm, consider
the dispersion of their directions

h/∥h∥ ∈ Sm.

Intuition: Distribution of h spherically
symmetric around origin
implies angular dispersion.

19 / 30



Synthetic validation
Generative process.
Draw n = 10M directions from
mixture of 5 Power Sphericals on S128,
with varying concentration.

Assign to each direction a uniform length
on [1, 100]

Evaluation.
Fit IVFPQ datastore with 2048 cells, 8
neighbors, batch size 10, nprobes = 32, and
measure over 10K random queries:
• imbalance factor IF = K

∑K
i=1

(ni
n
)2

• throughput (requests per second)

100 101 102 103

Concentration

101

102

103

104

R
e
q
./
s

13.8 14.53 32.5

45.9

112.6

151.6
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Can we make hidden states dispersed?

Not parameters, but network outputs:
ht = fθ(y1, . . . , yt)

Transformers are trained on minibatches,
we don’t see all contexts at once.

Doubly-stochastic sliced dispersion:
Each training update disperses a subset of
the collection along a random great circle.

500 1000 1500 2000 2500 3000 3500 4000
Steps

0.4

0.6

0.8

S
p
h
e
ri

ca
l 
V
a
ri

a
n
ce

w/o dispersion

sliced regularizer
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Dispersed kNN-MT
Romanian-English WMT16, transformer-base, m = 128.

0 500 1000 1500 2000
inverted list id (sorted)
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t

k-NN MT (baseline)

k-NN MT-D (w/ dispersion)
IF=68.3

IF=11.1

model #probes BLEU(↑) COMET(↑) tok/s(↑)
baseline - 31.5 78.95 75
kNN MT 32 32.4 79.89 12

kNN MT 8 32.2 79.69 28

kNN MT-D 32 32.6 79.91 53

kNN MT-D 8 32.6 79.93 63
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Continuous representations for efficient language models
kNN languagemodels:
a powerful model, more
adaptable, more interpretable
(→ also for speech recognition).

ht
cobblestones

cobblestones
paving

dispersion:
a centuries-old problem
still relevant in modern ML.

substantial improvements:
speedups and accuracy boost
thanks to going back to basics.

100 101 102 103

Concentration

101

102

103

104

R
e
q
./
s

13.8 14.53 32.5

45.9

112.6

151.6

Immediate perspectives:
• Seek alternatives to IVFPQ built directly for dispersion.
• Explore the spectrum between CoNMT and kNN-MT.

Long-term perspectives: Geometry of representations from single tokens to phrases;
“reasoning” over such structured / searchable spaces.
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Analysis: errors by frequency
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