
Vlad Niculae · Language Technology Lab, University of Amsterdam
https://vene.ro/mlsd · v.niculae@uva.nl

Structure Prediction

Athens NLP Summer School (AthNLP 2024)

https://vene.ro/mlsd
mailto:v.niculae@uva.nl

Aρις (Aris) Ωρíων (Orion)

Structure Prediction
1 Overview
2 Structured inputs

Recap: Encoding sequences. RNN, CNN, transformer
Encoding graphs

3 Structured outputs

Probabilistic models of structures
Directed acyclic graphs
Algorithms for paths in DAGs: Maximization, probabilities, sampling
Application: Sequence tagging
Application: Sequence segmentation
Evaluating structured outputs

4/∞

Machine Learning

2x y

Understanding, choosing, designing:
• models
• learning algorithms
• evaluation metrics
• experiment methodology

to learn and evaluate mappingsfrom inputs x to outputs y .

... for Structures

2

structure, noun: the way in which a
complex object’s parts are organized
in relationship to one another.

Many objects we want to do ML onhave interesting structure:
language, images, shapes, networks. . .

This lecture: how to work with structurein the input and the output.

Machine Learning

2x y

Understanding, choosing, designing:
• models
• learning algorithms
• evaluation metrics
• experiment methodology

to learn and evaluate mappingsfrom inputs x to outputs y .

... for Structures

2

structure, noun: the way in which a
complex object’s parts are organized
in relationship to one another.

Many objects we want to do ML onhave interesting structure:
language, images, shapes, networks. . .

This lecture: how to work with structurein the input and the output.

A few examples of structure

Sequence Grid Graph

Alignments Permutations Hierarchy
6/∞

Structures in NLP

• Sequence of (sub)words/characters: the usual way we encode linguistic data.
• Segmentation into entities / events / sections / speakers / ...
• Inter-word dependencies: syntactic or semantic analysis (graphs, trees)
• Alignment: between multi-lingual documents / speech to phonemes / ...

Structure is at the heart ofall models and algorithms designed for NLP.

7/∞

Context and acknowledgements

These slides are a condensed version of my UvA course “Machine Learning forStructures,” with materials publicly available at https://vene.ro/mlds.
The original course covers more applications beyond NLP.
Slide help acknowledgements:
• Caio Corro
• Stela Topalova
• Mara Pîslar
• all the students taking my class

Funding acknowledgements:
• my institute IvI at UvA
• NWO VI.Veni.212.228
• Horizon Europe UTTER 101070631

8/∞

https://vene.ro/mlds

Recap: ML classifiers

Learn to map from inputs x ∈ Xto corresponding outputs y ∈ Ygiven a set of training pairs (x, y).
Classification: Y = {1, 2, . . . ,K }.
Feature encoder φ : X → Òd .

(could be hand-crafted or a neural net)
To make predictions:

ŷ (x) = argmax
y ∈Y

w y · φ (x)

Another way to think of this:
weight matrix W with rows w1, . . . ,wk :
a(x) = Wφ (x) ∈ ÒK is a vector of scoresfor each of the k classes
score(y ; x) = [a(x)]y

The highest-scoring class wins:
ŷ (x) = argmax

y ∈Y
score(y ; x)

Lecture 1 or (Murphy, 2022, Ch.1)

9/∞

Recap: Probabilistic classifiers, logistic regression
We can give a probabilistic interpretation to the ML classifier by interpreting scoresas probabilities by applying softmax:

Pr(y | x) = exp(score(y ; x))
Z

, where Z =
∑
y ∈Y

exp(score(y ; x)).

y 1 2 3 4
score(y ; x) −1.5 0.2 0.9 −1.1
Pr(y | x) 0.05 0.29 0.58 0.08

This motivates logistic regression as a training objective (loss):train params to maximize ∑
(x,y) ∈D log Pr(y | x).

Why is softmax the way it is:
exp ensures all probabilities are non-negative.
Z is the normalizing constant to ensure probabilities sum to 1.

10/∞

Handling structures

We made no assumptions about the form of x ∈ X:
this is abstracted into the feature encoder φ (x).

In the next part (30min), we recap feature encoders for structured objects.
maybe with a few extensions you haven’t seen.

Afterward, we will look at structured outputs Y.

11/∞

Structure Prediction
1 Overview
2 Structured inputs

Recap: Encoding sequences. RNN, CNN, transformer
Encoding graphs

3 Structured outputs

Probabilistic models of structures
Directed acyclic graphs
Algorithms for paths in DAGs: Maximization, probabilities, sampling
Application: Sequence tagging
Application: Sequence segmentation
Evaluating structured outputs

12/∞

Structure Prediction
1 Overview
2 Structured inputs

Recap: Encoding sequences. RNN, CNN, transformer
Encoding graphs

3 Structured outputs

Probabilistic models of structures
Directed acyclic graphs
Algorithms for paths in DAGs: Maximization, probabilities, sampling
Application: Sequence tagging
Application: Sequence segmentation
Evaluating structured outputs

13/∞

Sequence input: Bag-of-words
Simple but powerful idea: for each vocabulary item, a feature that counts it:

φi (x) = number of occurrences of word vi in x .
This leads to:

! . book fairly good is long nt the thistext φ1 φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9
x1 “this book is good!” 1 0 1 0 1 1 0 0 0 1
x2 “fairly long book” 0 0 1 1 0 0 1 0 0 0
x3 “the book isn’t good.” 0 1 1 0 1 1 0 1 1 0. . .

Variants: zero-one, normalized frequencies.

Order is lost: φ (“doesn’t word order matter”) = φ (“word order doesn’t matter”)

(Jurafsky and Martin, 2024, Ch. 4.1)

14/∞

Sequence input: Bag-of-words
Simple but powerful idea: for each vocabulary item, a feature that counts it:

φi (x) = number of occurrences of word vi in x .
This leads to:

! . book fairly good is long nt the thistext φ1 φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9
x1 “this book is good!” 1 0 1 0 1 1 0 0 0 1
x2 “fairly long book” 0 0 1 1 0 0 1 0 0 0
x3 “the book isn’t good.” 0 1 1 0 1 1 0 1 1 0. . .

Variants: zero-one, normalized frequencies.
Order is lost: φ (“doesn’t word order matter”) = φ (“word order doesn’t matter”)

(Jurafsky and Martin, 2024, Ch. 4.1)

14/∞

Sequence inputs: Getting some structure back

Sequential order = a fundamental structure of language.
n-grams: treat n consecutive tokens as a single one.
Bigram tokenization:“the book isn’t good.“→ [the_book, book_is, is_n’t, n’t_good, good_.]
This captures some local order.
Can even combine: 1-gram ∪ 2-gram ∪ . . . ∪ n-gram: 1
But, it comes at a cost: how many features are needed?

1Ensure combination is reversible or else we won’t be able to distinguish features.For instance, here, _ must not appear in any unigram.
15/∞

Embeddings of discrete tokens (Jurafsky and Martin, 2024, Ch. 5)(Murphy, 2022, sec. 1.5.4.3)

Neural networks perform continuous operations.
For sequential discrete data, (language, DNA, etc), we must first represent eachtoken as a continuous “embedding” vector.

3
2
3
1
1

︸︷︷︸
∈ÒL

→

e (3)
e (2)
e (3)
e (1)
e (1)

︸ ︷︷ ︸
∈ÒL×d

The function e (i) retrieves the ith row from an embedding matrix E ∈ Ò |V |×d .
The embeddings could be fixed or learned as model parameters.

16/∞

Embeddings of discrete tokens (Jurafsky and Martin, 2024, Ch. 5)(Murphy, 2022, sec. 1.5.4.3)

Neural networks perform continuous operations.
For sequential discrete data, (language, DNA, etc), we must first represent eachtoken as a continuous “embedding” vector.

3
2
3
1
1

︸︷︷︸
∈ÒL

→

e (3)
e (2)
e (3)
e (1)
e (1)

︸ ︷︷ ︸
∈ÒL×d

The function e (i) retrieves the ith row from an embedding matrix E ∈ Ò |V |×d .
The embeddings could be fixed or learned as model parameters.

16/∞

Continuous bag-of-words (Goldberg, 2017, Ch. 13)

Different-length sequences can be encoded by pooling their embeddings.
3
2
3
1
1

→

1
3
2

 →
• average pooling: z = 1

L (z1 + . . . + zL)

• max pooling: [z]j = max([z1]j , . . . , [zL]j (coordinate-wise)
Just like in the standard bag of words, word order doesn’t matter.

17/∞

Sequence convolutions
aka 1-d convolution with d channels

(Goldberg, 2017, Ch. 13)

.7 .3 .1 .4 .1 .5 .9

• Denote L=sequence length,
d=embedding size, k=window size.

• In the single-channel case, a filter was adim-k vector. Now, a filter is a d × kmatrix.
• Output is still a single number perwindow.
• Apply m filters in parallel: output is adim-m vector per window:
a “layer” maps (L, d) → (L,m), for any L.

• Kind of like “continuous” n-grams!

To reduce visual noise on slides, we now use the same color for all words, even if they’re different words in general.
18/∞

Sequence convolutions
aka 1-d convolution with d channels

(Goldberg, 2017, Ch. 13)

.7 .3 .1 .4 .1 .5 .9

• Denote L=sequence length,
d=embedding size, k=window size.

• In the single-channel case, a filter was adim-k vector. Now, a filter is a d × kmatrix.

• Output is still a single number perwindow.
• Apply m filters in parallel: output is adim-m vector per window:
a “layer” maps (L, d) → (L,m), for any L.

• Kind of like “continuous” n-grams!

To reduce visual noise on slides, we now use the same color for all words, even if they’re different words in general.
18/∞

Sequence convolutions
aka 1-d convolution with d channels

(Goldberg, 2017, Ch. 13)

.7 .3 .1 .4 .1 .5 .9

• Denote L=sequence length,
d=embedding size, k=window size.

• In the single-channel case, a filter was adim-k vector. Now, a filter is a d × kmatrix.
• Output is still a single number perwindow.

• Apply m filters in parallel: output is adim-m vector per window:
a “layer” maps (L, d) → (L,m), for any L.

• Kind of like “continuous” n-grams!

To reduce visual noise on slides, we now use the same color for all words, even if they’re different words in general.
18/∞

Sequence convolutions
aka 1-d convolution with d channels

(Goldberg, 2017, Ch. 13)

• Denote L=sequence length,
d=embedding size, k=window size.

• In the single-channel case, a filter was adim-k vector. Now, a filter is a d × kmatrix.
• Output is still a single number perwindow.
• Apply m filters in parallel: output is adim-m vector per window:
a “layer” maps (L, d) → (L,m), for any L.

• Kind of like “continuous” n-grams!

To reduce visual noise on slides, we now use the same color for all words, even if they’re different words in general.
18/∞

Sequence convolutions
aka 1-d convolution with d channels

(Goldberg, 2017, Ch. 13)

• Denote L=sequence length,
d=embedding size, k=window size.

• In the single-channel case, a filter was adim-k vector. Now, a filter is a d × kmatrix.
• Output is still a single number perwindow.
• Apply m filters in parallel: output is adim-m vector per window:
a “layer” maps (L, d) → (L,m), for any L.

• Kind of like “continuous” n-grams!
To reduce visual noise on slides, we now use the same color for all words, even if they’re different words in general.

18/∞

Recurrent neural networks (RNN)(Jurafsky and Martin, 2024, Ch. 8)(Goldberg, 2017, Ch. 14)Lec. 2

Recurrently encoding a sequence of input vectors (x1, . . . , xn) → (z1, . . . , zn):

z t = φ (x t , z t−1)

x1 x2 x3
. . .

z0 z1 z2 z3 . . .

(input sequence)

(hidden states)

The simplest RNN is the Elman RNN:

z t = tanh
©« Wx t︸︷︷︸
linear of inputs

+ Uz t−1︸ ︷︷ ︸
linear of prev. state

+b
ª®®®¬

Each hidden state depends on the previousones. Therefore, cannot parallelize, mustcompute in order z1, z2, . . .

The initial state z0 is a fixed parameter.
The final state zn has seen the entiresequence. 19/∞

Pooling

z = AveragePool(z1, . . . , zn) :=
1
n

n∑
j=1

z i

Used to get one representation of a variable-size set or sequence.
Combine n input vectors into one single output vector,with equal contribution.

But what if some of the inputs should contribute more than others?

20/∞

Pooling

z = AveragePool(z1, . . . , zn) :=
1
n

n∑
j=1

z i

Used to get one representation of a variable-size set or sequence.
Combine n input vectors into one single output vector,with equal contribution.
But what if some of the inputs should contribute more than others?

20/∞

Weighted average pooling

z =
∑
i

αiz i , where αi ≥ 0,
∑
i

αi = 1

.2

.2

.2

.2

.2

.01

.02

.01

.95

.01

The weights α control the relative importance of the inputs.

But how to come up with these weights?How to decide what’s important in a given context?

21/∞

Weighted average pooling

z =
∑
i

αiz i , where αi ≥ 0,
∑
i

αi = 1

.2

.2

.2

.2

.2

.01

.02

.01

.95

.01

The weights α control the relative importance of the inputs.
But how to come up with these weights?How to decide what’s important in a given context?

21/∞

Attention (Jurafsky and Martin, 2024, Ch. 9)Lec. 2

Key idea: have a representation of the “context” as a vector q ∈ Òd .
Then, say the importance of z i is proportional to its alignment (∼ angle) to q:

αi =
exp(q · z i)∑
j exp(q · z j)︸ ︷︷ ︸

[softmax ([q ·z1,...,q ·zn])] i

; Attn(q; z1, . . . , zn) :=
∑
i

αiz i .

This is the basic attention mechanism:
Pool a bunch of vectors, with varying weights,depending on how aligned they are with a context.
What could be the context?
• Could be just a static learned parameter.
• If training on multiple tasks or domains, q can be an embedding of the domain.
• In machine translation (say EN→NL), z i are the EN words,

q can be an embedding of the last NL word predicted (one by one).

22/∞

Attention (Jurafsky and Martin, 2024, Ch. 9)Lec. 2

Key idea: have a representation of the “context” as a vector q ∈ Òd .
Then, say the importance of z i is proportional to its alignment (∼ angle) to q:

αi =
exp(q · z i)∑
j exp(q · z j)︸ ︷︷ ︸

[softmax ([q ·z1,...,q ·zn])] i

; Attn(q; z1, . . . , zn) :=
∑
i

αiz i .

This is the basic attention mechanism:
Pool a bunch of vectors, with varying weights,depending on how aligned they are with a context.

What could be the context?
• Could be just a static learned parameter.
• If training on multiple tasks or domains, q can be an embedding of the domain.
• In machine translation (say EN→NL), z i are the EN words,

q can be an embedding of the last NL word predicted (one by one).

22/∞

Attention (Jurafsky and Martin, 2024, Ch. 9)Lec. 2

Key idea: have a representation of the “context” as a vector q ∈ Òd .
Then, say the importance of z i is proportional to its alignment (∼ angle) to q:

αi =
exp(q · z i)∑
j exp(q · z j)︸ ︷︷ ︸

[softmax ([q ·z1,...,q ·zn])] i

; Attn(q; z1, . . . , zn) :=
∑
i

αiz i .

This is the basic attention mechanism:
Pool a bunch of vectors, with varying weights,depending on how aligned they are with a context.
What could be the context?
• Could be just a static learned parameter.
• If training on multiple tasks or domains, q can be an embedding of the domain.
• In machine translation (say EN→NL), z i are the EN words,

q can be an embedding of the last NL word predicted (one by one). 22/∞

Transformer
Stacked multi-head attention (+ some annoying details like LayerNorm)

The bears eat the pretty ones

• Combines some of thestrengths of CNN and RNN:
• Global even without muchdepth: every outputdepends on every input.
• Parallelizable: each positionand each head can becomputed separately.(still one layer at a time)
• Sequence-aware thanks topositional embeddings.

Structure Prediction
1 Overview
2 Structured inputs

Recap: Encoding sequences. RNN, CNN, transformer
Encoding graphs

3 Structured outputs

Probabilistic models of structures
Directed acyclic graphs
Algorithms for paths in DAGs: Maximization, probabilities, sampling
Application: Sequence tagging
Application: Sequence segmentation
Evaluating structured outputs

24/∞

Encoding general graphs

Graph-structured data: proteins, molecules, social networks, etc.
A graph G = (V ,E):
• V = {1, . . . , n} is the set of nodes.
• E ⊆ V × V are the edges, e.g.,
(u, v) ∈ E means an edge from u to v

• Directed vs undirected graphs: in anutshell, undirected means
(u, v) ∈ E ⇐⇒ (v , u) ∈ E .

• the adjacenty matrix A ∈ {0, 1}n×nencodes the set of edges E :
auv = 1 ⇐⇒ (u, v) ∈ E .

1
23

45
6

7
8

9

Each node can have a type(e.g., carbon, hydrogen, . . .).
For simplicity, we assumeall edges are of the same type.

25/∞

Graph datasets (Hamilton, 2020)

Two main scenarios, but the tools we use are the same
1. Each data point x (i) is a graph.

• e.g., molecule solubility, malicious software detection, protein classification, . . .
• in NLP: syntactic/semantic–annotated texts, natural language generation (fromAMR, from knowledge graphs).
• can be given as a sequence of node labels (x (i)1 , . . . , x

(i)
ni)and an adjacency matrix A(i)

2. Data points are parts of one big graph.
• e.g., node classification (classifying bots on twitter), link prediction (instagramfollow suggestions), community detection, . . .
• in NLP: linking, knowledge base completion
• harder to set up experiments, dev set/test set, etc.

26/∞

Node representations with graph neural nets

Encoding a graph of input vectors (x1, . . . , xn) → (z1, . . . , zn):

z (k)
i

• We apply an iterative process.
• At iteration 0, z (0)

i
= x i (the input embedding)

• At each iteration, a node’s embedding is updated as afunction of the embeddings of its neighbors,i.e., message passing along the edges:
m (k)

i
=

∑
j∈N (i)

z (k)
j

z (k+1)
i

= tanh
(
W selfz (k)i

+W neighm (k)i
+ b

)
• Apply this update in parallel for every node, then repeat.

27/∞

Pooling

As defined, a GNN gives us rich embeddings of every node.
To get a single embedding of the entire graph, we turn again to pooling.
Unlike for RNNs, there is no single node that could be taken as representative ofthe entire graph (especially if k is small and the graph is wide).
We turn to the kind of pooling used for CNNs:
1. average pooling: z = 1

n (z1 + . . . + zn)

2. max pooling: [z]j = max([z1]j , . . . , [zn]j)

28/∞

Permutation equivariance

The structure of a graph doesn’t change if we number the nodes in another order.
The output of a GNN should not change either.
Mathematically, given a graph represented as (X ,A), for any permutation matrix P ,a GNN satisfies

GNN(PX ,PAP⊤) = P GNN(X ,A).

29/∞

GNN variants

Many variations can be built on top of this idea.
• The update z (k+1)

i
= tanh(W selfz (k)i

+W neighm (k)i
+ b) resembles an RNN.

→ gated variants (GGNN)!
• Separate weight matrices per iteration (W (k)

{self,neigh}, b (k))
• Supporting different edge types:

• first, notice that W neigh∑j z j =
∑

j W neighz j .
• then, if e (i , j) is the type of the edge from i to j , we could compute ∑

j W e (i ,j)z j .
• Different normalization over neighbors (more next time).

30/∞

Self-attention for graphs

Self-attention (and thus Transformers) arepermutation equivariant.
Remember in GNN we computed themessage from neighbors as a sum:

mi =
∑

j∈N (i)
z i

Instead, self-attention over neighbors:
αij =

exp(q i · k j)∑
j ′∈N (i) exp(q i · k j ′)

mi =
∑

j∈N (i)
αijv j

In other words: self-attentionconstrained by the adjacencystructure
(no attention allowed where there isno edge)
Ethylene (C2H4): C

H

H
C

H

H

H H C C H H

31/∞

Self-attention for graphs

Self-attention (and thus Transformers) arepermutation equivariant.
Remember in GNN we computed themessage from neighbors as a sum:

mi =
∑

j∈N (i)
z i

Instead, self-attention over neighbors:
αij =

exp(q i · k j)∑
j ′∈N (i) exp(q i · k j ′)

mi =
∑

j∈N (i)
αijv j

In other words: self-attentionconstrained by the adjacencystructure
(no attention allowed where there isno edge)
Ethylene (C2H4): C

H

H
C

H

H

H H C C H H

31/∞

Self-attention for graphs

Self-attention (and thus Transformers) arepermutation equivariant.
Remember in GNN we computed themessage from neighbors as a sum:

mi =
∑

j∈N (i)
z i

Instead, self-attention over neighbors:
αij =

exp(q i · k j)∑
j ′∈N (i) exp(q i · k j ′)

mi =
∑

j∈N (i)
αijv j

In other words: self-attentionconstrained by the adjacencystructure
(no attention allowed where there isno edge)
Ethylene (C2H4): C

H

H
C

H

H

H H C C H H

31/∞

Structure Prediction
1 Overview
2 Structured inputs

Recap: Encoding sequences. RNN, CNN, transformer
Encoding graphs

3 Structured outputs

Probabilistic models of structures
Directed acyclic graphs
Algorithms for paths in DAGs: Maximization, probabilities, sampling
Application: Sequence tagging
Application: Sequence segmentation
Evaluating structured outputs

32/∞

Structure Prediction
1 Overview
2 Structured inputs

Recap: Encoding sequences. RNN, CNN, transformer
Encoding graphs

3 Structured outputs

Probabilistic models of structures
Directed acyclic graphs
Algorithms for paths in DAGs: Maximization, probabilities, sampling
Application: Sequence tagging
Application: Sequence segmentation
Evaluating structured outputs

33/∞

Smith, 2011

So far, we’ve studied this scenario:
• Structured inputs
• Familiar unstructured outputs:classification / regression.

2 y

In the next part of class,we study structured outputs.

2x

34/∞

Reminder: Kinds of structure

Sequence Grid Graph

Alignments Permutations Hierarchy
35/∞

Structured outputs are:
• discrete objects
• made of smaller parts
• which interact with each other and/or constrain each other.

Example: What are the possible ways to assign 4 jockeys to 4 horses?
Y = {(1, 2, 3, 4),

(1, 2, 4, 3),
(1, 3, 2, 4),
. . . ,

(4, 3, 2, 1)}

We can’t just predict the best jockey for each horse, or the best horse for eachjockey, since we might end up with double assignments.
What is |Y|?

36/∞

Structured outputs are:
• discrete objects
• made of smaller parts
• which interact with each other and/or constrain each other.

Example: What are the possible ways to assign 4 jockeys to 4 horses?
Y = {(1, 2, 3, 4),

(1, 2, 4, 3),
(1, 3, 2, 4),
. . . ,

(4, 3, 2, 1)}

We can’t just predict the best jockey for each horse, or the best horse for eachjockey, since we might end up with double assignments.
What is |Y|?

36/∞

Structured outputs are:
• discrete objects
• made of smaller parts
• which interact with each other and/or constrain each other.

Example: What are the possible ways to assign 4 jockeys to 4 horses?
Y = {(1, 2, 3, 4),

(1, 2, 4, 3),
(1, 3, 2, 4),
. . . ,

(4, 3, 2, 1)}

We can’t just predict the best jockey for each horse, or the best horse for eachjockey, since we might end up with double assignments.

What is |Y|?

36/∞

Structured outputs are:
• discrete objects
• made of smaller parts
• which interact with each other and/or constrain each other.

Example: What are the possible ways to assign 4 jockeys to 4 horses?
Y = {(1, 2, 3, 4),

(1, 2, 4, 3),
(1, 3, 2, 4),
. . . ,

(4, 3, 2, 1)}

We can’t just predict the best jockey for each horse, or the best horse for eachjockey, since we might end up with double assignments.
What is |Y|?

36/∞

Recap: Logistic regression and perceptron losses
The two losses we’ve seen for multi-class classification:(changing notation slightly)

LLR(y) = − log Pr(Y = y |x) = − score(y) + log
∑
y ′∈Y

exp (score(y ′))

LPerc(y) = − score(y) + max
y ′∈Y

score(y ′)

For classification:
• we had Y = {1, 2, . . . ,K }

• the model (linear or NN) outputs a vector a of scores for each class, so
score(y) = ay .

Can we generalize this to structured Y?
37/∞

Probabilistic models of structures

Our model must be able to assign a scoreto every possible structure, score(y ; x, θ).For brevity we just write score(y), butremember it depends on input andparams.
From this, we can get a probabilitydistribution over possible structures:

Pr(y | x) = exp (score(y))∑
y ′∈Y exp (score(y ′))

4 2 0 2 4

4321
4312
4231
4213
4132
4123
3421
3412
3241
3214
3142
3124
2431
2413
2341
2314
2143
2134
1432
1423
1342
1324
1243
1234

score(y)

0.0 0.2 0.4 0.6 0.8 1.0

P(y | x)

38/∞

Modelling challenges

Essential computational prerequisites:
• score(y)

• for prediction: argmaxy ∈Y score(y)

• for learning: log
∑

y ∈Y exp (score(y))

The challenges: unlike multi-class classification,
• Y can vary for each data point (e.g., with n. horses)
• |Y| can get very large: we can’t just for-loop over it.

Generally intractable!But, for certain structures and scoring functions, efficient algorithms exist.
39/∞

Structure Prediction
1 Overview
2 Structured inputs

Recap: Encoding sequences. RNN, CNN, transformer
Encoding graphs

3 Structured outputs

Probabilistic models of structures
Directed acyclic graphs
Algorithms for paths in DAGs: Maximization, probabilities, sampling
Application: Sequence tagging
Application: Sequence segmentation
Evaluating structured outputs

40/∞

Computations for structures
Recall: Structured outputs are:
• discrete objects
• made of smaller parts
• which interact with each other and/or constrain each other,

and we must know how to compute:
• score(y)

• for prediction: argmaxy ∈Y score(y)

• for learning: log
∑

y ∈Y exp (score(y))

For large problems, we can’t enumerate Y (could be exponentially large).
So, we must actually make use of its structure.

41/∞

Recap: Graphs

Definition 1: Weighted directed graph
A weighted directed graph is G = (V ,E ,w) where:
• V is the set of vertices (nodes) of G .
• E ⊂ V × V is the set of arcs of G :

uv ∈ E means there is an arc from node u ∈ V to node v ∈ V
(u , v).Arcs are ordered pairs, so uv , vu.

• w : E → Ò is a weight function assigning a weight to each edge.

Definition 2: Paths
A path A in G is a sequence of edges: A = e1e2 . . . ek , with each ei ∈ E ,two-by-two “linked”, i.e., if ei = uivi and ei+1 = ui+1vi+1then we must have vi = ui+1.
The weight of a path is the sum of arc weights: w (A) = ∑

e∈P w (e).
We denote path concatenation by A⌢1 A2 (when legal).

s

t x

y z

6

7

5

-4
8

-2
-3

9
2

7

ei ei+1

42/∞

Recap: Graphs

Definition 1: Weighted directed graph
A weighted directed graph is G = (V ,E ,w) where:
• V is the set of vertices (nodes) of G .
• E ⊂ V × V is the set of arcs of G :

uv ∈ E means there is an arc from node u ∈ V to node v ∈ V
(u , v).Arcs are ordered pairs, so uv , vu.

• w : E → Ò is a weight function assigning a weight to each edge.
Definition 2: Paths
A path A in G is a sequence of edges: A = e1e2 . . . ek , with each ei ∈ E ,two-by-two “linked”, i.e., if ei = uivi and ei+1 = ui+1vi+1then we must have vi = ui+1.

The weight of a path is the sum of arc weights: w (A) = ∑
e∈P w (e).

We denote path concatenation by A⌢1 A2 (when legal).

s

t x

y z

6

7

5

-4
8

-2
-3

9
2

7

ei ei+1

42/∞

Recap: Graphs

Definition 1: Weighted directed graph
A weighted directed graph is G = (V ,E ,w) where:
• V is the set of vertices (nodes) of G .
• E ⊂ V × V is the set of arcs of G :

uv ∈ E means there is an arc from node u ∈ V to node v ∈ V
(u , v).Arcs are ordered pairs, so uv , vu.

• w : E → Ò is a weight function assigning a weight to each edge.
Definition 2: Paths
A path A in G is a sequence of edges: A = e1e2 . . . ek , with each ei ∈ E ,two-by-two “linked”, i.e., if ei = uivi and ei+1 = ui+1vi+1then we must have vi = ui+1.
The weight of a path is the sum of arc weights: w (A) = ∑

e∈P w (e).
We denote path concatenation by A⌢1 A2 (when legal).

s

t x

y z

6

7

5

-4
8

-2
-3

9
2

7

ei ei+1

42/∞

Directed acyclic graphs

Definition 3: Cycle
A cycle is a path e1e2 . . . ek wherein the last edge ek points to the nodefrom which the first edge e1 departs.

Definition 4. Directed acyclic graph (DAG)
A DAG is a directed graph that contains no cycles.
Definition 4. Topological ordering
A topological ordering of a directed graph G = (V ,E) is an ordering ofits nodes v1, v2, . . . , vn such that if vivj ∈ E then i < j .
G is a DAG if and only if G admits a topological ordering.Rough intuition: “backward” edges against the ordering ⇐⇒ cycles.

s

a

b

c t

43/∞

Directed acyclic graphs

Definition 3: Cycle
A cycle is a path e1e2 . . . ek wherein the last edge ek points to the nodefrom which the first edge e1 departs.
Definition 4. Directed acyclic graph (DAG)
A DAG is a directed graph that contains no cycles.

Definition 4. Topological ordering
A topological ordering of a directed graph G = (V ,E) is an ordering ofits nodes v1, v2, . . . , vn such that if vivj ∈ E then i < j .
G is a DAG if and only if G admits a topological ordering.Rough intuition: “backward” edges against the ordering ⇐⇒ cycles.

s

a

b

c t

43/∞

Directed acyclic graphs

Definition 3: Cycle
A cycle is a path e1e2 . . . ek wherein the last edge ek points to the nodefrom which the first edge e1 departs.
Definition 4. Directed acyclic graph (DAG)
A DAG is a directed graph that contains no cycles.
Definition 4. Topological ordering
A topological ordering of a directed graph G = (V ,E) is an ordering ofits nodes v1, v2, . . . , vn such that if vivj ∈ E then i < j .
G is a DAG if and only if G admits a topological ordering.Rough intuition: “backward” edges against the ordering ⇐⇒ cycles.

s

a

b

c t

TOs:
s, a, b, c, t
s, b, a, c, t

43/∞

Structure Prediction
1 Overview
2 Structured inputs

Recap: Encoding sequences. RNN, CNN, transformer
Encoding graphs

3 Structured outputs

Probabilistic models of structures
Directed acyclic graphs
Algorithms for paths in DAGs: Maximization, probabilities, sampling
Application: Sequence tagging
Application: Sequence segmentation
Evaluating structured outputs

44/∞

Paths in DAGs

Label nodes in topological order V = {1, . . . , n}.
Let Yi be the set of paths starting at 1 and ending at i .

Let’s assume our space of structures is Y = Yn.
Important things to compute:
• score(y) = w (y)

• argmaxy ∈Yn w (y)

• log
∑

y ∈Yn expw (y)

1

2

3

4 5

(Smith, 2011, Sec. 2.2.4)

45/∞

Paths in DAGs

Label nodes in topological order V = {1, . . . , n}.
Let Yi be the set of paths starting at 1 and ending at i .
Let’s assume our space of structures is Y = Yn.
Important things to compute:
• score(y) = w (y)

• argmaxy ∈Yn w (y)

• log
∑

y ∈Yn expw (y)

1

2

3

4 5

(Smith, 2011, Sec. 2.2.4)

45/∞

Max-scoring path (Smith, 2011, Sec. 2.2.4)

• The greedy path from 1 to 5might not be best.
• From Data Structures and Algorithms youmight recall Dijkstra’s algorithm.

• Requires no “negative cycles” — always truefor DAGs.
• Complexity: Θ(|V | log |V | + |E |) with“Fibonacci heaps”; Θ(|V |2) with astraightforward implementation. .

• In the case of DAGs, we can do better.

1

2

3

4 5
10

15

-5

0

20

10

46/∞

Max-scoring path (Smith, 2011, Sec. 2.2.4)

• The greedy path from 1 to 5might not be best.
• From Data Structures and Algorithms youmight recall Dijkstra’s algorithm.

• Requires no “negative cycles” — always truefor DAGs.
• Complexity: Θ(|V | log |V | + |E |) with“Fibonacci heaps”; Θ(|V |2) with astraightforward implementation. .

• In the case of DAGs, we can do better.

1

2

3

4 5
10

15

-5

0

20

10

46/∞

Dynamic programming recurrence

1
2

3
4 5

Goal: the max weight of a path from 1 to i :
mi = max

y ∈Yi
w (y).

Define predecessors of i as Pi := {j ∈ V : ji ∈ E }.
Insight 1.
Any path from to i is an extension of some pathto predecessor j ∈ Pi by arc ji .
In other words: if y ∈ Yi then y = y ′⌢ji for some
j ∈ Pi and some y ′ ∈ Yj .

Proposition: DP recurrence for max
For any i > 1, the best path from 1 to iis the best among the extensions ofthe best path to the predecessors of i :

mi = max
j∈Pi

(
mj + w (ji)

)
Proof: mi := max

y ∈Yi
w (y)

= max
j∈Pi

max
y ′∈Yj

(w (y ′) + w (ji))

= max
j∈Pi

(
max
y ′∈Yj
(w (y ′)) + w (ji)

)
= max

j∈Pi

(
mj + w (ji)

)
.

47/∞

Dynamic programming recurrence

1
2

3
4 5

Goal: the max weight of a path from 1 to i :
mi = max

y ∈Yi
w (y).

Define predecessors of i as Pi := {j ∈ V : ji ∈ E }.
Insight 1.
Any path from to i is an extension of some pathto predecessor j ∈ Pi by arc ji .
In other words: if y ∈ Yi then y = y ′⌢ji for some
j ∈ Pi and some y ′ ∈ Yj .

Proposition: DP recurrence for max
For any i > 1, the best path from 1 to iis the best among the extensions ofthe best path to the predecessors of i :

mi = max
j∈Pi

(
mj + w (ji)

)
Proof: mi := max

y ∈Yi
w (y)

= max
j∈Pi

max
y ′∈Yj

(w (y ′) + w (ji))

= max
j∈Pi

(
max
y ′∈Yj
(w (y ′)) + w (ji)

)
= max

j∈Pi

(
mj + w (ji)

)
.

47/∞

Dynamic programming recurrence

1
2

3
4 5

Goal: the max weight of a path from 1 to i :
mi = max

y ∈Yi
w (y).

Define predecessors of i as Pi := {j ∈ V : ji ∈ E }.
Insight 1.
Any path from to i is an extension of some pathto predecessor j ∈ Pi by arc ji .
In other words: if y ∈ Yi then y = y ′⌢ji for some
j ∈ Pi and some y ′ ∈ Yj .

Proposition: DP recurrence for max
For any i > 1, the best path from 1 to iis the best among the extensions ofthe best path to the predecessors of i :

mi = max
j∈Pi

(
mj + w (ji)

)

Proof: mi := max
y ∈Yi

w (y)

= max
j∈Pi

max
y ′∈Yj

(w (y ′) + w (ji))

= max
j∈Pi

(
max
y ′∈Yj
(w (y ′)) + w (ji)

)
= max

j∈Pi

(
mj + w (ji)

)
.

47/∞

Dynamic programming recurrence

1
2

3
4 5

Goal: the max weight of a path from 1 to i :
mi = max

y ∈Yi
w (y).

Define predecessors of i as Pi := {j ∈ V : ji ∈ E }.
Insight 1.
Any path from to i is an extension of some pathto predecessor j ∈ Pi by arc ji .
In other words: if y ∈ Yi then y = y ′⌢ji for some
j ∈ Pi and some y ′ ∈ Yj .

Proposition: DP recurrence for max
For any i > 1, the best path from 1 to iis the best among the extensions ofthe best path to the predecessors of i :

mi = max
j∈Pi

(
mj + w (ji)

)
Proof: mi := max

y ∈Yi
w (y)

= max
j∈Pi

max
y ′∈Yj

(w (y ′) + w (ji))

= max
j∈Pi

(
max
y ′∈Yj
(w (y ′)) + w (ji)

)
= max

j∈Pi

(
mj + w (ji)

)
.

47/∞

Dynamic programming recurrence

1
2

3
4 5

Goal: the max weight of a path from 1 to i :
mi = max

y ∈Yi
w (y).

Define predecessors of i as Pi := {j ∈ V : ji ∈ E }.
Insight 1.
Any path from to i is an extension of some pathto predecessor j ∈ Pi by arc ji .
In other words: if y ∈ Yi then y = y ′⌢ji for some
j ∈ Pi and some y ′ ∈ Yj .

Proposition: DP recurrence for max
For any i > 1, the best path from 1 to iis the best among the extensions ofthe best path to the predecessors of i :

mi = max
j∈Pi

(
mj + w (ji)

)
Proof: mi := max

y ∈Yi
w (y)

= max
j∈Pi

max
y ′∈Yj

(w (y ′) + w (ji))

= max
j∈Pi

(
max
y ′∈Yj
(w (y ′)) + w (ji)

)
= max

j∈Pi

(
mj + w (ji)

)
.

47/∞

Dynamic programming recurrence

1
2

3
4 5

Goal: the max weight of a path from 1 to i :
mi = max

y ∈Yi
w (y).

Define predecessors of i as Pi := {j ∈ V : ji ∈ E }.
Insight 1.
Any path from to i is an extension of some pathto predecessor j ∈ Pi by arc ji .
In other words: if y ∈ Yi then y = y ′⌢ji for some
j ∈ Pi and some y ′ ∈ Yj .

Proposition: DP recurrence for max
For any i > 1, the best path from 1 to iis the best among the extensions ofthe best path to the predecessors of i :

mi = max
j∈Pi

(
mj + w (ji)

)
Proof: mi := max

y ∈Yi
w (y)

= max
j∈Pi

max
y ′∈Yj

(w (y ′) + w (ji))

= max
j∈Pi

(
max
y ′∈Yj
(w (y ′)) + w (ji)

)

= max
j∈Pi

(
mj + w (ji)

)
.

47/∞

Dynamic programming recurrence

1
2

3
4 5

Goal: the max weight of a path from 1 to i :
mi = max

y ∈Yi
w (y).

Define predecessors of i as Pi := {j ∈ V : ji ∈ E }.
Insight 1.
Any path from to i is an extension of some pathto predecessor j ∈ Pi by arc ji .
In other words: if y ∈ Yi then y = y ′⌢ji for some
j ∈ Pi and some y ′ ∈ Yj .

Proposition: DP recurrence for max
For any i > 1, the best path from 1 to iis the best among the extensions ofthe best path to the predecessors of i :

mi = max
j∈Pi

(
mj + w (ji)

)
Proof: mi := max

y ∈Yi
w (y)

= max
j∈Pi

max
y ′∈Yj

(w (y ′) + w (ji))

= max
j∈Pi

(
max
y ′∈Yj
(w (y ′)) + w (ji)

)
= max

j∈Pi

(
mj + w (ji)

)
.

47/∞

The Viterbi algorithm

1
2

3
4 5

10
15

-5
0

20
10

mi = maxj∈Pi

(
mj + w (ji)

) holds for any graph;but we would chase our own tail forever.

Insight 2.
In a topologically-ordered DAG, any path from
1 to i must only contain nodes j < i .
(So, we may compute m1, . . . ,mn in order.)
Insight 3.
A path acheiving maximal weight is made up ofthe edges j⋆i , where j⋆ is the node selected bythe max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
G = (V ,E ,w),V = {1, . . . , n}
output: maximum path weights m1, . . . ,mn.
initialize m1 ← 0
for i = 2, . . . , n do

mi ← max
j∈Pi

(
mj + w (ji)

)

πi ← argmax
j∈Pi

(
mj + w (ji)

)
Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
y = []; i ← n
while i > 1 do

y ← πi i
⌢y

i ← πi

Complexity: Θ(|V | + |E |).

48/∞

The Viterbi algorithm

1
2

3
4 5

10
15

-5
0

20
10

mi = maxj∈Pi

(
mj + w (ji)

) holds for any graph;but we would chase our own tail forever.
Insight 2.
In a topologically-ordered DAG, any path from
1 to i must only contain nodes j < i .
(So, we may compute m1, . . . ,mn in order.)

Insight 3.
A path acheiving maximal weight is made up ofthe edges j⋆i , where j⋆ is the node selected bythe max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
G = (V ,E ,w),V = {1, . . . , n}
output: maximum path weights m1, . . . ,mn.
initialize m1 ← 0
for i = 2, . . . , n do

mi ← max
j∈Pi

(
mj + w (ji)

)

πi ← argmax
j∈Pi

(
mj + w (ji)

)
Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
y = []; i ← n
while i > 1 do

y ← πi i
⌢y

i ← πi

Complexity: Θ(|V | + |E |).

48/∞

The Viterbi algorithm

1
2

3
4 5

10
15

-5
0

20
10

mi = maxj∈Pi

(
mj + w (ji)

) holds for any graph;but we would chase our own tail forever.
Insight 2.
In a topologically-ordered DAG, any path from
1 to i must only contain nodes j < i .
(So, we may compute m1, . . . ,mn in order.)

Insight 3.
A path acheiving maximal weight is made up ofthe edges j⋆i , where j⋆ is the node selected bythe max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
G = (V ,E ,w),V = {1, . . . , n}
output: maximum path weights m1, . . . ,mn.
initialize m1 ← 0
for i = 2, . . . , n do

mi ← max
j∈Pi

(
mj + w (ji)

)

πi ← argmax
j∈Pi

(
mj + w (ji)

)
Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
y = []; i ← n
while i > 1 do

y ← πi i
⌢y

i ← πi

Complexity: Θ(|V | + |E |).

48/∞

The Viterbi algorithm

1
2

3
4 5

10
15

-5
0

20
10

mi = maxj∈Pi

(
mj + w (ji)

) holds for any graph;but we would chase our own tail forever.
Insight 2.
In a topologically-ordered DAG, any path from
1 to i must only contain nodes j < i .
(So, we may compute m1, . . . ,mn in order.)
Insight 3.
A path acheiving maximal weight is made up ofthe edges j⋆i , where j⋆ is the node selected bythe max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
G = (V ,E ,w),V = {1, . . . , n}
output: maximum path weights m1, . . . ,mn.
initialize m1 ← 0
for i = 2, . . . , n do

mi ← max
j∈Pi

(
mj + w (ji)

)

πi ← argmax
j∈Pi

(
mj + w (ji)

)
Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
y = []; i ← n
while i > 1 do

y ← πi i
⌢y

i ← πi

Complexity: Θ(|V | + |E |).

48/∞

The Viterbi algorithm

1
2

3
4 5

10
15

-5
0

20
10

mi = maxj∈Pi

(
mj + w (ji)

) holds for any graph;but we would chase our own tail forever.
Insight 2.
In a topologically-ordered DAG, any path from
1 to i must only contain nodes j < i .
(So, we may compute m1, . . . ,mn in order.)
Insight 3.
A path acheiving maximal weight is made up ofthe edges j⋆i , where j⋆ is the node selected bythe max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
G = (V ,E ,w),V = {1, . . . , n}
output: maximum path weights m1, . . . ,mn.
initialize m1 ← 0
for i = 2, . . . , n do

mi ← max
j∈Pi

(
mj + w (ji)

)
πi ← argmax

j∈Pi

(
mj + w (ji)

)
Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
y = []; i ← n
while i > 1 do

y ← πi i
⌢y

i ← πi

Complexity: Θ(|V | + |E |).

48/∞

The Viterbi algorithm

1
2

3
4 5

10
15

-5
0

20
10

mi = maxj∈Pi

(
mj + w (ji)

) holds for any graph;but we would chase our own tail forever.
Insight 2.
In a topologically-ordered DAG, any path from
1 to i must only contain nodes j < i .
(So, we may compute m1, . . . ,mn in order.)
Insight 3.
A path acheiving maximal weight is made up ofthe edges j⋆i , where j⋆ is the node selected bythe max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
G = (V ,E ,w),V = {1, . . . , n}
output: maximum path weights m1, . . . ,mn.
initialize m1 ← 0
for i = 2, . . . , n do

mi ← max
j∈Pi

(
mj + w (ji)

)
πi ← argmax

j∈Pi

(
mj + w (ji)

)
Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
y = []; i ← n
while i > 1 do

y ← πi i
⌢y

i ← πi

Complexity: Θ(|V | + |E |).
48/∞

The Viterbi algorithm

1
2

3
4 5

10
15

-5
0

20
10

mi = maxj∈Pi

(
mj + w (ji)

) holds for any graph;but we would chase our own tail forever.
Insight 2.
In a topologically-ordered DAG, any path from
1 to i must only contain nodes j < i .
(So, we may compute m1, . . . ,mn in order.)
Insight 3.
A path acheiving maximal weight is made up ofthe edges j⋆i , where j⋆ is the node selected bythe max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
G = (V ,E ,w),V = {1, . . . , n}
output: maximum path weights m1, . . . ,mn.
initialize m1 ← 0
for i = 2, . . . , n do

mi ← max
j∈Pi

(
mj + w (ji)

)
πi ← argmax

j∈Pi

(
mj + w (ji)

)
Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
y = []; i ← n
while i > 1 do

y ← πi i
⌢y

i ← πi

Complexity: Θ(|V | + |E |).
48/∞

Probability distributions

1

2

3

4 5
10

15

-5

0

20

10

A weighted DAG induces a probability distributionsover all paths from 1 to n:

Pr(y) = exp(w (y))∑
y ′∈Yn exp(w (y ′))

y w (y) exp(w (y)) Pr(y)

1→ 2→ 5

10 + 20 = 30 1.1 · 1013 .9930

1→ 2→ 4→ 5

10 − 5 + 10 = 15 3.3 · 106 .0001

1→ 3→ 4→ 5

15 + 0 + 10 = 25 7.2 · 1010 .0069

To assess Pr(y) even for a single path, thedenominator sums over all paths.
Next goal: calculate this denominator efficiently.

49/∞

Probability distributions

1

2

3

4 5
10

15

-5

0

20

10

A weighted DAG induces a probability distributionsover all paths from 1 to n:

Pr(y) = exp(w (y))∑
y ′∈Yn exp(w (y ′))

y w (y) exp(w (y)) Pr(y)

1→ 2→ 5 10 + 20 = 30

1.1 · 1013 .9930

1→ 2→ 4→ 5 10 − 5 + 10 = 15

3.3 · 106 .0001

1→ 3→ 4→ 5 15 + 0 + 10 = 25

7.2 · 1010 .0069

To assess Pr(y) even for a single path, thedenominator sums over all paths.
Next goal: calculate this denominator efficiently.

49/∞

Probability distributions

1

2

3

4 5
10

15

-5

0

20

10

A weighted DAG induces a probability distributionsover all paths from 1 to n:

Pr(y) = exp(w (y))∑
y ′∈Yn exp(w (y ′))

y w (y) exp(w (y)) Pr(y)

1→ 2→ 5 10 + 20 = 30 1.1 · 1013

.9930

1→ 2→ 4→ 5 10 − 5 + 10 = 15 3.3 · 106

.0001

1→ 3→ 4→ 5 15 + 0 + 10 = 25 7.2 · 1010

.0069

To assess Pr(y) even for a single path, thedenominator sums over all paths.
Next goal: calculate this denominator efficiently.

49/∞

Probability distributions

1

2

3

4 5
10

15

-5

0

20

10

A weighted DAG induces a probability distributionsover all paths from 1 to n:

Pr(y) = exp(w (y))∑
y ′∈Yn exp(w (y ′))

y w (y) exp(w (y)) Pr(y)

1→ 2→ 5 10 + 20 = 30 1.1 · 1013 .9930
1→ 2→ 4→ 5 10 − 5 + 10 = 15 3.3 · 106 .0001
1→ 3→ 4→ 5 15 + 0 + 10 = 25 7.2 · 1010 .0069

To assess Pr(y) even for a single path, thedenominator sums over all paths.
Next goal: calculate this denominator efficiently.

49/∞

Log-probability DP recurrence
Since expw (y) can be huge, it’s better to workwith log-probabilities:

log Pr(y) = w (y) − log
∑

y ′∈Yn
expw (y ′)

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).
If y ∈ Yi then y = y ′⌢ji for some j ∈ Piand some y ′ ∈ Yj .
Insight 4: addition distributes over log-sum-exp.

c + log
∑
i

exp(zi) = log
∑
i

exp(c + zi)

Denote qi := log
∑
y ∈Yi exp(w (y)).

Proposition: DP recurrence for log-sum-exp.

qi = log
∑
j∈Pi

exp
(
qj + w (ji)

)
Compare with the DP recurrence for max:

mi = max
j∈Pi

(mj + w (ji)).

Proof: qi = log
∑
j∈Pi

∑
y ′∈Yj

exp
(
w (y ′) + w (ji)

)

= log
∑
j∈Pi

exp
©«log

∑
y ′∈Yj

exp(w (y ′)) + w (ji)ª®¬
= log

∑
j∈Pi

exp
(
qj + w (ji)

)
.

50/∞

Log-probability DP recurrence
Since expw (y) can be huge, it’s better to workwith log-probabilities:

log Pr(y) = w (y) − log
∑

y ′∈Yn
expw (y ′)

so we aim to compute this log-sum-exp directly.
Insight 1 (from before).
If y ∈ Yi then y = y ′⌢ji for some j ∈ Piand some y ′ ∈ Yj .

Insight 4: addition distributes over log-sum-exp.

c + log
∑
i

exp(zi) = log
∑
i

exp(c + zi)

Denote qi := log
∑
y ∈Yi exp(w (y)).

Proposition: DP recurrence for log-sum-exp.

qi = log
∑
j∈Pi

exp
(
qj + w (ji)

)
Compare with the DP recurrence for max:

mi = max
j∈Pi

(mj + w (ji)).

Proof: qi = log
∑
j∈Pi

∑
y ′∈Yj

exp
(
w (y ′) + w (ji)

)

= log
∑
j∈Pi

exp
©«log

∑
y ′∈Yj

exp(w (y ′)) + w (ji)ª®¬
= log

∑
j∈Pi

exp
(
qj + w (ji)

)
.

50/∞

Log-probability DP recurrence
Since expw (y) can be huge, it’s better to workwith log-probabilities:

log Pr(y) = w (y) − log
∑

y ′∈Yn
expw (y ′)

so we aim to compute this log-sum-exp directly.
Insight 1 (from before).
If y ∈ Yi then y = y ′⌢ji for some j ∈ Piand some y ′ ∈ Yj .
Insight 4: addition distributes over log-sum-exp.

c + log
∑
i

exp(zi) = log
∑
i

exp(c + zi)

Denote qi := log
∑
y ∈Yi exp(w (y)).

Proposition: DP recurrence for log-sum-exp.

qi = log
∑
j∈Pi

exp
(
qj + w (ji)

)
Compare with the DP recurrence for max:

mi = max
j∈Pi

(mj + w (ji)).

Proof: qi = log
∑
j∈Pi

∑
y ′∈Yj

exp
(
w (y ′) + w (ji)

)

= log
∑
j∈Pi

exp
©«log

∑
y ′∈Yj

exp(w (y ′)) + w (ji)ª®¬
= log

∑
j∈Pi

exp
(
qj + w (ji)

)
.

50/∞

Log-probability DP recurrence
Since expw (y) can be huge, it’s better to workwith log-probabilities:

log Pr(y) = w (y) − log
∑

y ′∈Yn
expw (y ′)

so we aim to compute this log-sum-exp directly.
Insight 1 (from before).
If y ∈ Yi then y = y ′⌢ji for some j ∈ Piand some y ′ ∈ Yj .
Insight 4: addition distributes over log-sum-exp.

c + log
∑
i

exp(zi) = log
∑
i

exp(c + zi)

Denote qi := log
∑
y ∈Yi exp(w (y)).

Proposition: DP recurrence for log-sum-exp.

qi = log
∑
j∈Pi

exp
(
qj + w (ji)

)
Compare with the DP recurrence for max:

mi = max
j∈Pi

(mj + w (ji)).

Proof: qi = log
∑
j∈Pi

∑
y ′∈Yj

exp
(
w (y ′) + w (ji)

)

= log
∑
j∈Pi

exp
©«log

∑
y ′∈Yj

exp(w (y ′)) + w (ji)ª®¬
= log

∑
j∈Pi

exp
(
qj + w (ji)

)
.

50/∞

Log-probability DP recurrence
Since expw (y) can be huge, it’s better to workwith log-probabilities:

log Pr(y) = w (y) − log
∑

y ′∈Yn
expw (y ′)

so we aim to compute this log-sum-exp directly.
Insight 1 (from before).
If y ∈ Yi then y = y ′⌢ji for some j ∈ Piand some y ′ ∈ Yj .
Insight 4: addition distributes over log-sum-exp.

c + log
∑
i

exp(zi) = log
∑
i

exp(c + zi)

Denote qi := log
∑
y ∈Yi exp(w (y)).

Proposition: DP recurrence for log-sum-exp.

qi = log
∑
j∈Pi

exp
(
qj + w (ji)

)
Compare with the DP recurrence for max:

mi = max
j∈Pi

(mj + w (ji)).

Proof: qi = log
∑
j∈Pi

∑
y ′∈Yj

exp
(
w (y ′) + w (ji)

)

= log
∑
j∈Pi

exp
©«log

∑
y ′∈Yj

exp(w (y ′)) + w (ji)ª®¬
= log

∑
j∈Pi

exp
(
qj + w (ji)

)
.

50/∞

Log-probability DP recurrence
Since expw (y) can be huge, it’s better to workwith log-probabilities:

log Pr(y) = w (y) − log
∑

y ′∈Yn
expw (y ′)

so we aim to compute this log-sum-exp directly.
Insight 1 (from before).
If y ∈ Yi then y = y ′⌢ji for some j ∈ Piand some y ′ ∈ Yj .
Insight 4: addition distributes over log-sum-exp.

c + log
∑
i

exp(zi) = log
∑
i

exp(c + zi)

Denote qi := log
∑
y ∈Yi exp(w (y)).

Proposition: DP recurrence for log-sum-exp.

qi = log
∑
j∈Pi

exp
(
qj + w (ji)

)
Compare with the DP recurrence for max:

mi = max
j∈Pi

(mj + w (ji)).

Proof: qi = log
∑
j∈Pi

∑
y ′∈Yj

exp
(
w (y ′) + w (ji)

)
= log

∑
j∈Pi

exp
©«log

∑
y ′∈Yj

exp(w (y ′)) + w (ji)ª®¬

= log
∑
j∈Pi

exp
(
qj + w (ji)

)
.

50/∞

Log-probability DP recurrence
Since expw (y) can be huge, it’s better to workwith log-probabilities:

log Pr(y) = w (y) − log
∑

y ′∈Yn
expw (y ′)

so we aim to compute this log-sum-exp directly.
Insight 1 (from before).
If y ∈ Yi then y = y ′⌢ji for some j ∈ Piand some y ′ ∈ Yj .
Insight 4: addition distributes over log-sum-exp.

c + log
∑
i

exp(zi) = log
∑
i

exp(c + zi)

Denote qi := log
∑
y ∈Yi exp(w (y)).

Proposition: DP recurrence for log-sum-exp.

qi = log
∑
j∈Pi

exp
(
qj + w (ji)

)
Compare with the DP recurrence for max:

mi = max
j∈Pi

(mj + w (ji)).

Proof: qi = log
∑
j∈Pi

∑
y ′∈Yj

exp
(
w (y ′) + w (ji)

)
= log

∑
j∈Pi

exp
©«log

∑
y ′∈Yj

exp(w (y ′)) + w (ji)ª®¬
= log

∑
j∈Pi

exp
(
qj + w (ji)

)
.

50/∞

The Forward algorithm

1

2

3

4 5
10

15

-5

0

20

10

General forward algorithm for DAGs

input: Topologically-ordered DAG
G = (V ,E ,w),V = {1, . . . , n}
output: qn := log

∑
y ∈Yn expw (y).

initialize q1 ← 0
for i = 2, . . . , n do

qi ← log
∑
j∈Pi

exp
(
qj + w (ji)

)
Complexity: Θ(|V | + |E |).
Lets us calculate the log-probability of anygiven sequence log Pr(y).
Can use autodiff to get +w log Pr(y).

51/∞

Spot a pattern?

Why are these two algorithms so similar?
(Mohri, 2002)

Deriving the DP recurrences was almost identical.

The pattern:
• x ⊕ y = max(x, y); x ⊗ y = x + y form a semiring over Ò ∪ {−∞}.
• x ⊕ y = log(ex + ey); x ⊗ y = x + y form a semiring over Ò ∪ {−∞}.

This is a very productive generalization that leads to other algorithms too:
• the boolean semiring x ⊕ y = x ∨ y , x ⊗ y = x ∧ y over {0, 1}yields an algorithm for path existence;
• there is a semiring that leads to top-k paths.

52/∞

Spot a pattern?

Why are these two algorithms so similar?
(Mohri, 2002)

Deriving the DP recurrences was almost identical.
The pattern:
• x ⊕ y = max(x, y); x ⊗ y = x + y form a semiring over Ò ∪ {−∞}.
• x ⊕ y = log(ex + ey); x ⊗ y = x + y form a semiring over Ò ∪ {−∞}.

This is a very productive generalization that leads to other algorithms too:
• the boolean semiring x ⊕ y = x ∨ y , x ⊗ y = x ∧ y over {0, 1}yields an algorithm for path existence;
• there is a semiring that leads to top-k paths.

52/∞

Spot a pattern?

Why are these two algorithms so similar?
(Mohri, 2002)

Deriving the DP recurrences was almost identical.
The pattern:
• x ⊕ y = max(x, y); x ⊗ y = x + y form a semiring over Ò ∪ {−∞}.
• x ⊕ y = log(ex + ey); x ⊗ y = x + y form a semiring over Ò ∪ {−∞}.

This is a very productive generalization that leads to other algorithms too:
• the boolean semiring x ⊕ y = x ∨ y , x ⊗ y = x ∧ y over {0, 1}yields an algorithm for path existence;
• there is a semiring that leads to top-k paths.

52/∞

Sampling paths

Goal: draw samples from the distribution over paths: y1, . . . , yk ∼ Pr(Y = y).
Motivation:
• analyze not just the most likely path, but a set of “typical” paths
• perform inferences

ÅPr(Y) [F (Y)]

for arbitrary functions F ,
• train structured latent variable models

53/∞

Sampling: One arc at a time
Probability that the last arcof a path ending in i is ji :

Pr(ji |y ends in i) =

∑
[y ′;ji]∈Yi exp(w (y

′) + w (ji))∑
y ∈Yi exp(w (y))

=
exp(w (ji))∑y ′∈Yj exp(w (y

′))∑
y ∈Yi exp(w (y))

= exp(w (ji) + qj − qi)

All paths end in n, so draw the final arc jn first.
Repeat same reasoning on the subgraph withnodes 1, . . . , j , i.e., replace n with j and repeatuntil we hit 1.
Resembles the backpointers from Viterbi:think “stochastic backpointers”.

j

i

Forward filtering, backward sampling for DAGs

input: Topologically-ordered DAG;
output: y: a sample from Pr(y).
initialize q1 ← 0
for i = 2, . . . , n do

qi ← log
∑
j∈Pi

exp
(
qj + w (ji)

)
y = []; i ← n
while i > 1 dosample j ∈ Pi w.p. pj = exp(w (ji) + qj − qi)

y ← ji⌢y
i ← j

54/∞

Sampling: One arc at a time
Probability that the last arcof a path ending in i is ji :

Pr(ji |y ends in i) =
∑
[y ′;ji]∈Yi exp(w (y

′) + w (ji))∑
y ∈Yi exp(w (y))

=
exp(w (ji))∑y ′∈Yj exp(w (y

′))∑
y ∈Yi exp(w (y))

= exp(w (ji) + qj − qi)

All paths end in n, so draw the final arc jn first.
Repeat same reasoning on the subgraph withnodes 1, . . . , j , i.e., replace n with j and repeatuntil we hit 1.
Resembles the backpointers from Viterbi:think “stochastic backpointers”.

j

i

Forward filtering, backward sampling for DAGs

input: Topologically-ordered DAG;
output: y: a sample from Pr(y).
initialize q1 ← 0
for i = 2, . . . , n do

qi ← log
∑
j∈Pi

exp
(
qj + w (ji)

)
y = []; i ← n
while i > 1 dosample j ∈ Pi w.p. pj = exp(w (ji) + qj − qi)

y ← ji⌢y
i ← j

54/∞

Sampling: One arc at a time
Probability that the last arcof a path ending in i is ji :

Pr(ji |y ends in i) =
∑
[y ′;ji]∈Yi exp(w (y

′) + w (ji))∑
y ∈Yi exp(w (y))

=
exp(w (ji))∑y ′∈Yj exp(w (y

′))∑
y ∈Yi exp(w (y))

= exp(w (ji) + qj − qi)

All paths end in n, so draw the final arc jn first.
Repeat same reasoning on the subgraph withnodes 1, . . . , j , i.e., replace n with j and repeatuntil we hit 1.
Resembles the backpointers from Viterbi:think “stochastic backpointers”.

j

i

Forward filtering, backward sampling for DAGs

input: Topologically-ordered DAG;
output: y: a sample from Pr(y).
initialize q1 ← 0
for i = 2, . . . , n do

qi ← log
∑
j∈Pi

exp
(
qj + w (ji)

)
y = []; i ← n
while i > 1 dosample j ∈ Pi w.p. pj = exp(w (ji) + qj − qi)

y ← ji⌢y
i ← j

54/∞

Sampling: One arc at a time
Probability that the last arcof a path ending in i is ji :

Pr(ji |y ends in i) =
∑
[y ′;ji]∈Yi exp(w (y

′) + w (ji))∑
y ∈Yi exp(w (y))

=
exp(w (ji))∑y ′∈Yj exp(w (y

′))∑
y ∈Yi exp(w (y))

= exp(w (ji) + qj − qi)

All paths end in n, so draw the final arc jn first.
Repeat same reasoning on the subgraph withnodes 1, . . . , j , i.e., replace n with j and repeatuntil we hit 1.
Resembles the backpointers from Viterbi:think “stochastic backpointers”.

j

i

Forward filtering, backward sampling for DAGs

input: Topologically-ordered DAG;
output: y: a sample from Pr(y).
initialize q1 ← 0
for i = 2, . . . , n do

qi ← log
∑
j∈Pi

exp
(
qj + w (ji)

)
y = []; i ← n
while i > 1 dosample j ∈ Pi w.p. pj = exp(w (ji) + qj − qi)

y ← ji⌢y
i ← j

54/∞

Sampling: One arc at a time
Probability that the last arcof a path ending in i is ji :

Pr(ji |y ends in i) =
∑
[y ′;ji]∈Yi exp(w (y

′) + w (ji))∑
y ∈Yi exp(w (y))

=
exp(w (ji))∑y ′∈Yj exp(w (y

′))∑
y ∈Yi exp(w (y))

= exp(w (ji) + qj − qi)

All paths end in n, so draw the final arc jn first.

Repeat same reasoning on the subgraph withnodes 1, . . . , j , i.e., replace n with j and repeatuntil we hit 1.
Resembles the backpointers from Viterbi:think “stochastic backpointers”.

j

i

Forward filtering, backward sampling for DAGs

input: Topologically-ordered DAG;
output: y: a sample from Pr(y).
initialize q1 ← 0
for i = 2, . . . , n do

qi ← log
∑
j∈Pi

exp
(
qj + w (ji)

)
y = []; i ← n
while i > 1 dosample j ∈ Pi w.p. pj = exp(w (ji) + qj − qi)

y ← ji⌢y
i ← j

54/∞

Sampling: One arc at a time
Probability that the last arcof a path ending in i is ji :

Pr(ji |y ends in i) =
∑
[y ′;ji]∈Yi exp(w (y

′) + w (ji))∑
y ∈Yi exp(w (y))

=
exp(w (ji))∑y ′∈Yj exp(w (y

′))∑
y ∈Yi exp(w (y))

= exp(w (ji) + qj − qi)

All paths end in n, so draw the final arc jn first.
Repeat same reasoning on the subgraph withnodes 1, . . . , j , i.e., replace n with j and repeatuntil we hit 1.
Resembles the backpointers from Viterbi:think “stochastic backpointers”.

j

i

Forward filtering, backward sampling for DAGs

input: Topologically-ordered DAG;
output: y: a sample from Pr(y).
initialize q1 ← 0
for i = 2, . . . , n do

qi ← log
∑
j∈Pi

exp
(
qj + w (ji)

)
y = []; i ← n
while i > 1 dosample j ∈ Pi w.p. pj = exp(w (ji) + qj − qi)

y ← ji⌢y
i ← j

54/∞

Sampling: One arc at a time
Probability that the last arcof a path ending in i is ji :

Pr(ji |y ends in i) =
∑
[y ′;ji]∈Yi exp(w (y

′) + w (ji))∑
y ∈Yi exp(w (y))

=
exp(w (ji))∑y ′∈Yj exp(w (y

′))∑
y ∈Yi exp(w (y))

= exp(w (ji) + qj − qi)

All paths end in n, so draw the final arc jn first.
Repeat same reasoning on the subgraph withnodes 1, . . . , j , i.e., replace n with j and repeatuntil we hit 1.
Resembles the backpointers from Viterbi:think “stochastic backpointers”.

j

i

Forward filtering, backward sampling for DAGs

input: Topologically-ordered DAG;
output: y: a sample from Pr(y).
initialize q1 ← 0
for i = 2, . . . , n do

qi ← log
∑
j∈Pi

exp
(
qj + w (ji)

)
y = []; i ← n
while i > 1 dosample j ∈ Pi w.p. pj = exp(w (ji) + qj − qi)

y ← ji⌢y
i ← j

54/∞

Dynamic programming in DAG conclusion

If we can cast our problem as finding paths in a DAG, then dynamic programming(DP) lets us calculate:
• argmaxy ∈Y score(y)

• log
∑

y ∈Y exp score(y) and therefore probabilities
• samples from the distribution over structures

in linear time Θ(|V | + |E |).
Next we see a bunch of structures that fit this pattern, and some that do not.

Some structures solvable by DP cannot be represented via DAGs.

55/∞

Dynamic programming in DAG: references and historical notes

The best modern reference for DP as taught in this course is Huang (2008).
Historically, DP is credited to Bellman (1954) in optimal policies and control.
Popularity of DP in NLP came via hidden markov models (HMM) in the 70s and 80sin speech, especially at IBM Research and Bell Labs through a limited-circulationtext (Ferguson, 1980): Rabiner gives a first-hand history (Rabiner, n.d.).
Viterbi (1967) was working on information theory / codes. Forward comes fromMarkov process and is due to Baum (1972). FFBS (Frühwirth-Schnatter, 1994)originates from state space models. There is a lot of reinvention and misattributionaround DP, and confusing naming. I tried to name things simply and logically but itcan be ambiguous.

56/∞

Structure Prediction
1 Overview
2 Structured inputs

Recap: Encoding sequences. RNN, CNN, transformer
Encoding graphs

3 Structured outputs

Probabilistic models of structures
Directed acyclic graphs
Algorithms for paths in DAGs: Maximization, probabilities, sampling
Application: Sequence tagging
Application: Sequence segmentation
Evaluating structured outputs

57/∞

Sequence tagging

Given a sequence of n items x = (x1, . . . , xn), assign to each of them one of K tags:
y = (y1, . . . , yn) where each yi ∈ {1, . . . ,K }.

58/∞

Sequence tagging

Given a sequence of n items x = (x1, . . . , xn), assign to each of them one of K tags:
y = (y1, . . . , yn) where each yi ∈ {1, . . . ,K }.

Example 1: Part-of-speech (POS) tagging in NLP
the old man the boat

y a det adj noun det noun
yb det noun verb det noun

58/∞

Sequence tagging

Given a sequence of n items x = (x1, . . . , xn), assign to each of them one of K tags:
y = (y1, . . . , yn) where each yi ∈ {1, . . . ,K }.

Example 2: Frame-level phoneme classification (may be part of speech recognition)

0
256

4096

Hz

0 0.5 1 1.5 2 2.5
Time (s)

ð i o l d m æ n z a z m e nd f k st nð d

the old man's eyes remained fixed on the door

58/∞

Sequence tagging

Given a sequence of n items x = (x1, . . . , xn), assign to each of them one of K tags:
y = (y1, . . . , yn) where each yi ∈ {1, . . . ,K }.

Example 3: Optical character recognition

8 2 4 0 8 2

58/∞

Characterizing the output space
Given a sequence of n items x = (x1, . . . , xn), assign to each of them one of K tags:

y = (y1, . . . , yn) where each yi ∈ {1, . . . ,K }.

Input x = (x1, . . . , xn), e.g., a sequence of words.
Output y = (y1, . . . , yn), e.g., a sequence of part-of-speech tags.
For each data point (sentence), |y | = |x |; different data points have different lengths.

For fixed length n, some possible outputs:
• (1, 1, . . . , 1, 1) ∈ Y
• (1, 1, . . . , 1, 2) ∈ Y
• (K ,K , . . . ,K ,K) ∈ Y

How many in terms of n?

59/∞

Characterizing the output space
Given a sequence of n items x = (x1, . . . , xn), assign to each of them one of K tags:

y = (y1, . . . , yn) where each yi ∈ {1, . . . ,K }.

Input x = (x1, . . . , xn), e.g., a sequence of words.
Output y = (y1, . . . , yn), e.g., a sequence of part-of-speech tags.
For each data point (sentence), |y | = |x |; different data points have different lengths.
For fixed length n, some possible outputs:
• (1, 1, . . . , 1, 1) ∈ Y
• (1, 1, . . . , 1, 2) ∈ Y
• (K ,K , . . . ,K ,K) ∈ Y

How many in terms of n?
59/∞

Part-of-speech tags

Source: (Jurafsky and Martin, 2024) https://web.stanford.edu/~jurafsky/slp3/8.pdf ©Jurafsky and Martin
60/∞

https://web.stanford.edu/~jurafsky/slp3/8.pdf

Designing a simple scorer

Writing y = (y1, . . . , yn), take
score(y) = ∑

j aj,yj .

A is a matrix of scores,e.g., computed by a NN encoder.

the old man the boat
y a det adj noun det noun
yb det noun verb det noun

score(y a) =

21

score(yb) =

17

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

61/∞

Designing a simple scorer

Writing y = (y1, . . . , yn), take
score(y) = ∑

j aj,yj .

A is a matrix of scores,e.g., computed by a NN encoder.

the old man the boat
y a det adj noun det noun
yb det noun verb det noun

score(y a) =

21

score(yb) =

17

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

61/∞

Designing a simple scorer

Writing y = (y1, . . . , yn), take
score(y) = ∑

j aj,yj .

A is a matrix of scores,e.g., computed by a NN encoder.

the old man the boat
y a det adj noun det noun
yb det noun verb det noun

score(y a) =

21

score(yb) =

17

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

61/∞

Designing a simple scorer

Writing y = (y1, . . . , yn), take
score(y) = ∑

j aj,yj .

A is a matrix of scores,e.g., computed by a NN encoder.

the old man the boat
y a det adj noun det noun
yb det noun verb det noun

score(y a) = 21

score(yb) =

17

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

61/∞

Designing a simple scorer

Writing y = (y1, . . . , yn), take
score(y) = ∑

j aj,yj .

A is a matrix of scores,e.g., computed by a NN encoder.

the old man the boat
y a det adj noun det noun
yb det noun verb det noun

score(y a) = 21

score(yb) =

17

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

61/∞

Designing a simple scorer

Writing y = (y1, . . . , yn), take
score(y) = ∑

j aj,yj .

A is a matrix of scores,e.g., computed by a NN encoder.

the old man the boat
y a det adj noun det noun
yb det noun verb det noun

score(y a) = 21

score(yb) = 17

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

61/∞

Designing a simple scorer

A first attempt:separate classifier for each position.
1. embed and encode x , eg, with a CNN.

(x1, . . . , xn) → (z1, . . . , zn)

2. For each position j , apply aclassification head with K outputs. E.g.,
aj = W⊤z j + b

Think of A as a matrix with n rows and
K columns, where aj,c is the score ofassigning tag c at position j .

3. Writing y = (y1, . . . , yn),take score(y) = ∑
j aj,yj .

words = [21, 79, 14] # indices
emb = Embedding(vocab_sz, dim)
clf = Linear(dim, n_tags)

optionally add RNN, CNN, whatever

Z = emb(words) # (3 × dim)
A = clf(Z) # (3 × n_tags)

computing the score of a given tag sequence:
y = [2, 0, 2]

y_score = sum(A[i, yi]
for y, yi in enumerate(y))

or, if you want to be fancy/fast:
y_score = A[torch.arange(len(y)), y].sum()

62/∞

Finding the best sequence

With our score(y) = ∑
j aj,yj , can we compute:

max
y ∈Y

score(y)

= max
y1∈[K],...,yn∈[K]

score ([y1, . . . , yn])

= max
y1∈[K],...,yn∈[K]

∑
j

aj,yj

=
∑
j

max
yj ∈[K]

aj,yj

So, argmaxy score(y) is made up of the tagsselected independently at each position.

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

63/∞

Finding the best sequence

With our score(y) = ∑
j aj,yj , can we compute:

max
y ∈Y

score(y)

= max
y1∈[K],...,yn∈[K]

score ([y1, . . . , yn])

= max
y1∈[K],...,yn∈[K]

∑
j

aj,yj

=
∑
j

max
yj ∈[K]

aj,yj

So, argmaxy score(y) is made up of the tagsselected independently at each position.

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

63/∞

Finding the best sequence

With our score(y) = ∑
j aj,yj , can we compute:

max
y ∈Y

score(y)

= max
y1∈[K],...,yn∈[K]

score ([y1, . . . , yn])

= max
y1∈[K],...,yn∈[K]

∑
j

aj,yj

=
∑
j

max
yj ∈[K]

aj,yj

So, argmaxy score(y) is made up of the tagsselected independently at each position.

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

63/∞

Finding the best sequence

With our score(y) = ∑
j aj,yj , can we compute:

max
y ∈Y

score(y)

= max
y1∈[K],...,yn∈[K]

score ([y1, . . . , yn])

= max
y1∈[K],...,yn∈[K]

∑
j

aj,yj

=
∑
j

max
yj ∈[K]

aj,yj

So, argmaxy score(y) is made up of the tagsselected independently at each position.

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

63/∞

Finding the best sequence

With our score(y) = ∑
j aj,yj , can we compute:

max
y ∈Y

score(y)

= max
y1∈[K],...,yn∈[K]

score ([y1, . . . , yn])

= max
y1∈[K],...,yn∈[K]

∑
j

aj,yj

=
∑
j

max
yj ∈[K]

aj,yj

So, argmaxy score(y) is made up of the tagsselected independently at each position.

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

63/∞

Normalizing constant (log-sum-exp)
With our score(y) = ∑

j aj,yj , can we compute:

log
∑
y ∈Y

exp (score(y))

= log
K∑

y1=1

. . .

K∑
yn=1

exp
n∑
j=1

aj,yj

= log
K∑

y1=1

. . .

K∑
yn=1

n∏
j=1

exp aj,yj

= log
n∏
j=1

K∑
yj=1

exp aj,yj

=
n∑
j=1

log
K∑

yj=1

exp aj,yj

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

Probabilistic interpretation: independence

log Pr(y) = score(y) − log
∑

y ′∈Y
exp score(y ′)

=
∑
j

©«aj,yj − log
∑

k∈[K]
exp aj,k

ª®¬︸ ︷︷ ︸
log Pr(yj)

64/∞

Normalizing constant (log-sum-exp)
With our score(y) = ∑

j aj,yj , can we compute:

log
∑
y ∈Y

exp (score(y))

= log
K∑

y1=1

. . .

K∑
yn=1

exp
n∑
j=1

aj,yj

= log
K∑

y1=1

. . .

K∑
yn=1

n∏
j=1

exp aj,yj

= log
n∏
j=1

K∑
yj=1

exp aj,yj

=
n∑
j=1

log
K∑

yj=1

exp aj,yj

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

Probabilistic interpretation: independence

log Pr(y) = score(y) − log
∑

y ′∈Y
exp score(y ′)

=
∑
j

©«aj,yj − log
∑

k∈[K]
exp aj,k

ª®¬︸ ︷︷ ︸
log Pr(yj)

64/∞

Normalizing constant (log-sum-exp)
With our score(y) = ∑

j aj,yj , can we compute:

log
∑
y ∈Y

exp (score(y))

= log
K∑

y1=1

. . .

K∑
yn=1

exp
n∑
j=1

aj,yj

= log
K∑

y1=1

. . .

K∑
yn=1

n∏
j=1

exp aj,yj

= log
n∏
j=1

K∑
yj=1

exp aj,yj

=
n∑
j=1

log
K∑

yj=1

exp aj,yj

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

Probabilistic interpretation: independence

log Pr(y) = score(y) − log
∑

y ′∈Y
exp score(y ′)

=
∑
j

©«aj,yj − log
∑

k∈[K]
exp aj,k

ª®¬︸ ︷︷ ︸
log Pr(yj)

64/∞

Normalizing constant (log-sum-exp)
With our score(y) = ∑

j aj,yj , can we compute:

log
∑
y ∈Y

exp (score(y))

= log
K∑

y1=1

. . .

K∑
yn=1

exp
n∑
j=1

aj,yj

= log
K∑

y1=1

. . .

K∑
yn=1

n∏
j=1

exp aj,yj

= log
n∏
j=1

K∑
yj=1

exp aj,yj

=
n∑
j=1

log
K∑

yj=1

exp aj,yj

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

Probabilistic interpretation: independence

log Pr(y) = score(y) − log
∑

y ′∈Y
exp score(y ′)

=
∑
j

©«aj,yj − log
∑

k∈[K]
exp aj,k

ª®¬︸ ︷︷ ︸
log Pr(yj)

64/∞

Normalizing constant (log-sum-exp)
With our score(y) = ∑

j aj,yj , can we compute:

log
∑
y ∈Y

exp (score(y))

= log
K∑

y1=1

. . .

K∑
yn=1

exp
n∑
j=1

aj,yj

= log
K∑

y1=1

. . .

K∑
yn=1

n∏
j=1

exp aj,yj

= log
n∏
j=1

K∑
yj=1

exp aj,yj

=
n∑
j=1

log
K∑

yj=1

exp aj,yj

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

Probabilistic interpretation: independence

log Pr(y) = score(y) − log
∑

y ′∈Y
exp score(y ′)

=
∑
j

©«aj,yj − log
∑

k∈[K]
exp aj,k

ª®¬︸ ︷︷ ︸
log Pr(yj)

64/∞

Normalizing constant (log-sum-exp)
With our score(y) = ∑

j aj,yj , can we compute:

log
∑
y ∈Y

exp (score(y))

= log
K∑

y1=1

. . .

K∑
yn=1

exp
n∑
j=1

aj,yj

= log
K∑

y1=1

. . .

K∑
yn=1

n∏
j=1

exp aj,yj

= log
n∏
j=1

K∑
yj=1

exp aj,yj

=
n∑
j=1

log
K∑

yj=1

exp aj,yj

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

Probabilistic interpretation: independence

log Pr(y) = score(y) − log
∑

y ′∈Y
exp score(y ′)

=
∑
j

©«aj,yj − log
∑

k∈[K]
exp aj,k

ª®¬︸ ︷︷ ︸
log Pr(yj)

64/∞

Fully-local vs. fully-global

For sequence tagging, the separable (fully-local) score
score(y) =

∑
j

aj,yj

amounts to applying a probabilistic classifier to each of the n positions separately!(any “magic” comes from the feature represtntation / neural net encoder.)
Can we design a richer score(y) taking into account the sequential structure of y?

65/∞

Fully-local vs. fully-global
Entirely global model: like classification, where each possible sequence is a class.

y score(y)
det det det det det −1000
det det det det noun −940
det det det det verb −800

. . .

det noun verb det noun 400
. . .

verb verb verb verb verb −1100

As expressive as possible: score is any function of the sequence.

But completely intractable: O (Kn) time and space.
Structure output prediction is about the space in between these two extremes.

66/∞

Fully-local vs. fully-global
Entirely global model: like classification, where each possible sequence is a class.

y score(y)
det det det det det −1000
det det det det noun −940
det det det det verb −800

. . .

det noun verb det noun 400
. . .

verb verb verb verb verb −1100

As expressive as possible: score is any function of the sequence.
But completely intractable: O (Kn) time and space.

Structure output prediction is about the space in between these two extremes.

66/∞

Fully-local vs. fully-global
Entirely global model: like classification, where each possible sequence is a class.

y score(y)
det det det det det −1000
det det det det noun −940
det det det det verb −800

. . .

det noun verb det noun 400
. . .

verb verb verb verb verb −1100

As expressive as possible: score is any function of the sequence.
But completely intractable: O (Kn) time and space.
Structure output prediction is about the space in between these two extremes.

66/∞

Scoring with transitions

Idea: scoring transitions between adjacent tags

score(y) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj

For example, score([NOUN, DET, VERB]) = +a2,DETa1,NOUN + a3,VERB + tNOUN,DET + tDET,VERB

67/∞

Scoring with transitions

A rich scorer that takes into account the sequential nature of y while still allowingefficient computation:
scoring transitions between adjacent tags

score(y) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj

For example, score([NOUN, DET, VERB]) = a1,NOUN + a2,DET + a3,VERB + tNOUN,DET + tDET,VERB

68/∞

Sequence modeling with transition scores

score(y) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj

The tag scores A ∈ Òn×K can be computed as before (e.g., with a convnet.)
The transition scores T ∈ ÒK×K :
• could be a learned parameter. (size does not depend on n)
• could be predicted by the neural net as a function of x .

Unlike in the separable case, with transition scores, we no longer get n parallelclassifiers: the different tags impact one another. (This makes the model moreexpressive and more interesting.)
69/∞

Sequence tagging as a DAG

score(y) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj

the old man the boat

det

noun

adj

verb

G = (V ,E ,w) where:
V ={(j, c): j ∈ [n], c ∈ [K]}
∪ {s, t}

E ={(j − 1, c ′) → (j, c): j ∈ [2, n], c, c ′ ∈ [K]}
∪ {s → (1, c): c ∈ [K]}
∪ {(n, c) → t: c ∈ [K]}

w
(
(j − 1, c ′) → (j, c)

)
= aj,c + tc ′,c

w (s → (1, c)) = a1,c

w ((n, c) → t) = 0

|V | ∈ Θ(nK); |E | ∈ Θ(nK2)

Topological ordering?
70/∞

Viterbi for sequence tagging

the old man the boat

det

noun

adj

verb

General Viterbi (reminder sketch)

initialize m1 ← 0
for i = 2, . . . , n do

mi ← max
j∈Pi

(
mj + w (ji)

)
πi ← argmax

j∈Pi

(
mj + w (ji)

)
follow backpointers to get best path

Viterbi for sequence tagging

input: Unary scores A (n × K array)Transition scores T (K × K array)
Forward: compute scores recursively
m1c = a1c for all c ∈ [K]
for j = 2 to n do
for c = 1 to K do
mj,c ← maxc ′∈[K]

(
mj−1,c ′ + aj,c + tc ′,c

)
πj,c ← argmaxc ′∈[K]

(
mj−1,c ′ + aj,c + tc ′,c

)
f ⋆ = maxc ′∈[K] mn,c ′

Backward: follow backpointers
yn = argmaxc ′ mn (c ′)
for j = n − 1 down to 1 do
yj = πj+1,yj+1

output: f ⋆ and y⋆ = [y1, . . . , yn] 71/∞

Viterbi for sequence tagging: Example

mj,c is stored as a matrix M , same shape as A.
Apply m1,c = a1,c to get the first row: (copied from A)
Then iteratively: mj,c = maxc ′∈[K] mj−1,c ′ + aj,c + tc ′,c

At the end, take the maximum over the last row.
det noun adj verb

the
oldman
the

boat

M =

To find the best tag sequence y⋆, keep track of the path.

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

72/∞

Viterbi for sequence tagging: Example

mj,c is stored as a matrix M , same shape as A.
Apply m1,c = a1,c to get the first row: (copied from A)
Then iteratively: mj,c = maxc ′∈[K] mj−1,c ′ + aj,c + tc ′,c

At the end, take the maximum over the last row.
det noun adj verb

the 5 0 0 0
oldman
the

boat

M =

To find the best tag sequence y⋆, keep track of the path.

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

72/∞

Viterbi for sequence tagging: Example

mj,c is stored as a matrix M , same shape as A.
Apply m1,c = a1,c to get the first row: (copied from A)
Then iteratively: mj,c = maxc ′∈[K] mj−1,c ′ + aj,c + tc ′,c

At the end, take the maximum over the last row.
det noun adj verb

the 5 0 0 0
oldman
the

boat

M =

To find the best tag sequence y⋆, keep track of the path.

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

72/∞

Viterbi for sequence tagging: Example

mj,c is stored as a matrix M , same shape as A.
Apply m1,c = a1,c to get the first row: (copied from A)
Then iteratively: mj,c = maxc ′∈[K] mj−1,c ′ + aj,c + tc ′,c

At the end, take the maximum over the last row.
det noun adj verb

the 5 0 0 0
old 1man
the

boat

M =

To find the best tag sequence y⋆, keep track of the path.

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

72/∞

Viterbi for sequence tagging: Example

mj,c is stored as a matrix M , same shape as A.
Apply m1,c = a1,c to get the first row: (copied from A)
Then iteratively: mj,c = maxc ′∈[K] mj−1,c ′ + aj,c + tc ′,c

At the end, take the maximum over the last row.
det noun adj verb

the 5 0 0 0
old 1man
the

boat

M =

To find the best tag sequence y⋆, keep track of the path.

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

72/∞

Viterbi for sequence tagging: Example

mj,c is stored as a matrix M , same shape as A.
Apply m1,c = a1,c to get the first row: (copied from A)
Then iteratively: mj,c = maxc ′∈[K] mj−1,c ′ + aj,c + tc ′,c

At the end, take the maximum over the last row.
det noun adj verb

the 5 0 0 0
old 1 9man
the

boat

M =

To find the best tag sequence y⋆, keep track of the path.

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

72/∞

Viterbi for sequence tagging: Example

mj,c is stored as a matrix M , same shape as A.
Apply m1,c = a1,c to get the first row: (copied from A)
Then iteratively: mj,c = maxc ′∈[K] mj−1,c ′ + aj,c + tc ′,c

At the end, take the maximum over the last row.
det noun adj verb

the 5 0 0 0
old 1 9 10 4man
the

boat

M =

To find the best tag sequence y⋆, keep track of the path.

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

72/∞

Viterbi for sequence tagging: Example

mj,c is stored as a matrix M , same shape as A.
Apply m1,c = a1,c to get the first row: (copied from A)
Then iteratively: mj,c = maxc ′∈[K] mj−1,c ′ + aj,c + tc ′,c

At the end, take the maximum over the last row.
det noun adj verb

the 5 0 0 0
old 1 9 10 4
man 8 15 11 12
the 18 13 14 17

boat 18 26 20 17

M =

To find the best tag sequence y⋆, keep track of the path.

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

72/∞

Viterbi for sequence tagging: Example

mj,c is stored as a matrix M , same shape as A.
Apply m1,c = a1,c to get the first row: (copied from A)
Then iteratively: mj,c = maxc ′∈[K] mj−1,c ′ + aj,c + tc ′,c

At the end, take the maximum over the last row.
det noun adj verb

the 5 0 0 0
old 1 9 10 4
man 8 15 11 12
the 18 13 14 17

boat 18 26 20 17

M =

To find the best tag sequence y⋆, keep track of the path.

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

72/∞

Viterbi for sequence tagging: Example

mj,c is stored as a matrix M , same shape as A.
Apply m1,c = a1,c to get the first row: (copied from A)
Then iteratively: mj,c = maxc ′∈[K] mj−1,c ′ + aj,c + tc ′,c

At the end, take the maximum over the last row.
det noun adj verb

the 5 0 0 0
old 1 9 10 4
man 8 15 11 12
the 18 13 14 17

boat 18 26 20 17

M =

To find the best tag sequence y⋆, keep track of the path.

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

72/∞

The two main recurrences of sequence tagging:

(Dynamic programming applied to the sequence tagging DAG)

mj,c = max
c ′∈[K]

(
mj−1,c ′ + ajc + tc ′c

)
,

qj,c = log
∑

c ′∈[K]
exp

(
qj−1,c ′ + ajc + tc ′c

)
.

73/∞

The Forward algorithm

Forward algorithm for sequence tagging
input: Unary scores A (n × K array)Transition scores T (K × K array)
Forward: compute scores recursively
q1,c = a1,c for all c ∈ [K]
for j = 2 to n do

for c = 1 to K do
qj,c = log

∑
c ′∈[K] exp

(
qj−1,c ′ + aj,c + tc ′,c

)
return logZ = log

∑
c ′∈[K] exp

(
qn,c ′

)

74/∞

the old man the boat
ya det adj noun det noun score(ya) = 25
yb det noun verb det noun score(yb) = 26
yc noun noun noun noun noun score(yc) = 1

Applying the Forward algorithm yields
det noun adj verb

the 5.00 0.00 0.00 0.00
old 1.73 9.00 10.00 4.19
man 8.18 15.01 11.05 12.70
the 18.88 13.92 14.37 17.03

boat 18.08 26.88 20.90 18.38

Q =

logZ ≈ 26.885

logP (ya) = score(ya) − logZ = 25 − 26.885 = −1.885

logP (yb) = score(yb) − logZ = 26 − 26.885 = −0.885

logP (yc) = score(yc) − logZ = 1 − 26.885 = −25.885

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0

boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

75/∞

the old man the boat
ya det adj noun det noun score(ya) = 25
yb det noun verb det noun score(yb) = 26
yc noun noun noun noun noun score(yc) = 1

Applying the Forward algorithm yields
det noun adj verb

the 5.00 0.00 0.00 0.00
old 1.73 9.00 10.00 4.19
man 8.18 15.01 11.05 12.70
the 18.88 13.92 14.37 17.03

boat 18.08 26.88 20.90 18.38

Q =

logZ ≈ 26.885

logP (ya) = score(ya) − logZ = 25 − 26.885 = −1.885

logP (yb) = score(yb) − logZ = 26 − 26.885 = −0.885

logP (yc) = score(yc) − logZ = 1 − 26.885 = −25.885

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0

boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

75/∞

the old man the boat
ya det adj noun det noun score(ya) = 25
yb det noun verb det noun score(yb) = 26
yc noun noun noun noun noun score(yc) = 1

Applying the Forward algorithm yields
det noun adj verb

the 5.00 0.00 0.00 0.00
old 1.73 9.00 10.00 4.19
man 8.18 15.01 11.05 12.70
the 18.88 13.92 14.37 17.03

boat 18.08 26.88 20.90 18.38

Q =

logZ ≈ 26.885

logP (ya) = score(ya) − logZ = 25 − 26.885 = −1.885

logP (yb) = score(yb) − logZ = 26 − 26.885 = −0.885

logP (yc) = score(yc) − logZ = 1 − 26.885 = −25.885

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0

boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

75/∞

the old man the boat
ya det adj noun det noun score(ya) = 25
yb det noun verb det noun score(yb) = 26
yc noun noun noun noun noun score(yc) = 1

Applying the Forward algorithm yields
det noun adj verb

the 5.00 0.00 0.00 0.00
old 1.73 9.00 10.00 4.19
man 8.18 15.01 11.05 12.70
the 18.88 13.92 14.37 17.03

boat 18.08 26.88 20.90 18.38

Q =

logZ ≈ 26.885

logP (ya) = score(ya) − logZ = 25 − 26.885 = −1.885

logP (yb) = score(yb) − logZ = 26 − 26.885 = −0.885

logP (yc) = score(yc) − logZ = 1 − 26.885 = −25.885

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0

boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

75/∞

the old man the boat
ya det adj noun det noun score(ya) = 25
yb det noun verb det noun score(yb) = 26
yc noun noun noun noun noun score(yc) = 1

Applying the Forward algorithm yields
det noun adj verb

the 5.00 0.00 0.00 0.00
old 1.73 9.00 10.00 4.19
man 8.18 15.01 11.05 12.70
the 18.88 13.92 14.37 17.03

boat 18.08 26.88 20.90 18.38

Q =

logZ ≈ 26.885

logP (ya) = score(ya) − logZ = 25 − 26.885 = −1.885

logP (yb) = score(yb) − logZ = 26 − 26.885 = −0.885

logP (yc) = score(yc) − logZ = 1 − 26.885 = −25.885

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0

boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

75/∞

Putting it all together

At this point, we have all the ingredients needed to train a probabilistic sequencetagger with transition scores!
1. Receiving an input sequence x , the model returns unary and transition scores

A and T .
2. If we’re at test time:run Viterbi to get predicted sequence; compute accuracies etc.
3. If training time:run Forward algorithm to compute the training objective
− logP (y | x) = − score(y) + log∑y ′∈Y exp score(y ′).

76/∞

Structure Prediction
1 Overview
2 Structured inputs

Recap: Encoding sequences. RNN, CNN, transformer
Encoding graphs

3 Structured outputs

Probabilistic models of structures
Directed acyclic graphs
Algorithms for paths in DAGs: Maximization, probabilities, sampling
Application: Sequence tagging
Application: Sequence segmentation
Evaluating structured outputs

77/∞

Sequence segmentation
The rod cutting problem: We have a rod of length n units, and we can cut it at everymarker. What cuts to make to maximize the total value of the resulting pieces?

0 1 2 3 4 5 6 7 8 9 10

DNA/RNA: A C A G A T T A C C
Word segmentation:

Entity Extraction: Mayor Halsema to visit the University of Amsterdam next Friday

0 0.5 1 1.5 2 2.5
Time (s)

0

256

4096

Hz

Speech:

78/∞

Sequence segmentation
The rod cutting problem: We have a rod of length n units, and we can cut it at everymarker. What cuts to make to maximize the total value of the resulting pieces?

0 1 2 3 4 5 6 7 8 9 10

DNA/RNA: A C A G A T T A C C

Word segmentation:
Entity Extraction: Mayor Halsema to visit the University of Amsterdam next Friday

0 0.5 1 1.5 2 2.5
Time (s)

0

256

4096

Hz

Speech:

78/∞

Sequence segmentation
The rod cutting problem: We have a rod of length n units, and we can cut it at everymarker. What cuts to make to maximize the total value of the resulting pieces?

0 1 2 3 4 5 6 7 8 9 10

DNA/RNA: A C A G A T T A C C
Word segmentation:

Entity Extraction: Mayor Halsema to visit the University of Amsterdam next Friday

0 0.5 1 1.5 2 2.5
Time (s)

0

256

4096

Hz

Speech:

78/∞

Sequence segmentation
The rod cutting problem: We have a rod of length n units, and we can cut it at everymarker. What cuts to make to maximize the total value of the resulting pieces?

0 1 2 3 4 5 6 7 8 9 10

DNA/RNA: A C A G A T T A C C
Word segmentation:

Entity Extraction: Mayor Halsema to visit the University of Amsterdam next Friday

0 0.5 1 1.5 2 2.5
Time (s)

0

256

4096

Hz

Speech:

78/∞

Sequence segmentation
The rod cutting problem: We have a rod of length n units, and we can cut it at everymarker. What cuts to make to maximize the total value of the resulting pieces?

0 1 2 3 4 5 6 7 8 9 10

DNA/RNA: A C A G A T T A C C
Word segmentation:

Entity Extraction: Mayor Halsema to visit the University of Amsterdam next Friday

0 0.5 1 1.5 2 2.5
Time (s)

0

256

4096

Hz

Speech:

78/∞

Representing and scoring segmentations

0 1 2 3 4 5 6 7 8 9 10
A C A G A T T A C C cuts

[4,5]

segments
[(0,4), (4,5), (5,10)]

score
a0,4 + a4,5 + a5,10

a0,6 + a6,10

a0,1 + a1,2 + . . . + a9,10

a0,10

• How many possible segments?
• How many possible segmentations?
• Scoring: assign a score to every possible segment (i , j).
• You can visualize this as the “upper triangle” of a (n+1) × (n+1) matrix:

0

0

1

1

. . .

. . .

n-1

n-1

n

n

79/∞

Representing and scoring segmentations

0 1 2 3 4 5 6 7 8 9 10
A C A G A T T A C C cuts

[4,5]
[6]

segments
[(0,4), (4,5), (5,10)]
[(0,6), (6,10)]

score
a0,4 + a4,5 + a5,10

a0,6 + a6,10

a0,1 + a1,2 + . . . + a9,10

a0,10

• How many possible segments?
• How many possible segmentations?
• Scoring: assign a score to every possible segment (i , j).
• You can visualize this as the “upper triangle” of a (n+1) × (n+1) matrix:

0

0

1

1

. . .

. . .

n-1

n-1

n

n

79/∞

Representing and scoring segmentations

0 1 2 3 4 5 6 7 8 9 10
A C A G A T T A C C cuts

[4,5]
[6]
[1,2,...,9]

segments
[(0,4), (4,5), (5,10)]
[(0,6), (6,10)]
[(0,1), . . . , (9,10)]

score
a0,4 + a4,5 + a5,10

a0,6 + a6,10

a0,1 + a1,2 + . . . + a9,10

a0,10

• How many possible segments?
• How many possible segmentations?
• Scoring: assign a score to every possible segment (i , j).
• You can visualize this as the “upper triangle” of a (n+1) × (n+1) matrix:

0

0

1

1

. . .

. . .

n-1

n-1

n

n

79/∞

Representing and scoring segmentations

0 1 2 3 4 5 6 7 8 9 10
A C A G A T T A C C cuts

[4,5]
[6]
[1,2,...,9]
[]

segments
[(0,4), (4,5), (5,10)]
[(0,6), (6,10)]
[(0,1), . . . , (9,10)]
[(0, 10)]

score
a0,4 + a4,5 + a5,10

a0,6 + a6,10

a0,1 + a1,2 + . . . + a9,10

a0,10

• How many possible segments?
• How many possible segmentations?
• Scoring: assign a score to every possible segment (i , j).
• You can visualize this as the “upper triangle” of a (n+1) × (n+1) matrix:

0

0

1

1

. . .

. . .

n-1

n-1

n

n

79/∞

Representing and scoring segmentations

0 1 2 3 4 5 6 7 8 9 10
A C A G A T T A C C cuts

[4,5]
[6]
[1,2,...,9]
[]

segments
[(0,4), (4,5), (5,10)]
[(0,6), (6,10)]
[(0,1), . . . , (9,10)]
[(0, 10)]

score
a0,4 + a4,5 + a5,10

a0,6 + a6,10

a0,1 + a1,2 + . . . + a9,10

a0,10

• How many possible segments?

• How many possible segmentations?
• Scoring: assign a score to every possible segment (i , j).
• You can visualize this as the “upper triangle” of a (n+1) × (n+1) matrix:

0

0

1

1

. . .

. . .

n-1

n-1

n

n

79/∞

Representing and scoring segmentations

0 1 2 3 4 5 6 7 8 9 10
A C A G A T T A C C cuts

[4,5]
[6]
[1,2,...,9]
[]

segments
[(0,4), (4,5), (5,10)]
[(0,6), (6,10)]
[(0,1), . . . , (9,10)]
[(0, 10)]

score
a0,4 + a4,5 + a5,10

a0,6 + a6,10

a0,1 + a1,2 + . . . + a9,10

a0,10

• How many possible segments?
• How many possible segmentations?

• Scoring: assign a score to every possible segment (i , j).
• You can visualize this as the “upper triangle” of a (n+1) × (n+1) matrix:

0

0

1

1

. . .

. . .

n-1

n-1

n

n

79/∞

Representing and scoring segmentations

0 1 2 3 4 5 6 7 8 9 10
A C A G A T T A C C cuts

[4,5]
[6]
[1,2,...,9]
[]

segments
[(0,4), (4,5), (5,10)]
[(0,6), (6,10)]
[(0,1), . . . , (9,10)]
[(0, 10)]

score
a0,4 + a4,5 + a5,10

a0,6 + a6,10

a0,1 + a1,2 + . . . + a9,10

a0,10

• How many possible segments?
• How many possible segmentations?
• Scoring: assign a score to every possible segment (i , j).

• You can visualize this as the “upper triangle” of a (n+1) × (n+1) matrix:

0

0

1

1

. . .

. . .

n-1

n-1

n

n

79/∞

Representing and scoring segmentations

0 1 2 3 4 5 6 7 8 9 10
A C A G A T T A C C cuts

[4,5]
[6]
[1,2,...,9]
[]

segments
[(0,4), (4,5), (5,10)]
[(0,6), (6,10)]
[(0,1), . . . , (9,10)]
[(0, 10)]

score
a0,4 + a4,5 + a5,10

a0,6 + a6,10

a0,1 + a1,2 + . . . + a9,10

a0,10

• How many possible segments?
• How many possible segmentations?
• Scoring: assign a score to every possible segment (i , j).
• You can visualize this as the “upper triangle” of a (n+1) × (n+1) matrix:

0

0

1

1

. . .

. . .

n-1

n-1

n

n

79/∞

Dynamic programming: DAG formulation

0 1 2 3 4 5

Nodes: one per fencepost. V = {0, 1, . . . , n}.

Edges: one per segment.
E = {(i , j) : 0 ≤ i < j ≤ n}.
Topologic order?
Any path from 0 to n correspondsto a segmentation of the sequence.

Viterbi for segmentation

input: segment scores A ∈ Òn×n

Forward: compute recursively
m1 = a01; π1 = 0
for j = 2 to n do
mj ← max0≤i<j mi + aij
πj ← argmax0≤i<j mi + aij
f ⋆ = mn

Backward: follow backpointers
y⋆ = []; j ← n
while j > 0 do
y⋆ = [(πj , j)] + y⋆

j = πj

Analogously, we can obtain a Forwardalgorithm for logZ : exercise for you.

80/∞

Dynamic programming: DAG formulation

0 1 2 3 4 5

Nodes: one per fencepost. V = {0, 1, . . . , n}.
Edges: one per segment.
E = {(i , j) : 0 ≤ i < j ≤ n}.

Topologic order?
Any path from 0 to n correspondsto a segmentation of the sequence.

Viterbi for segmentation

input: segment scores A ∈ Òn×n

Forward: compute recursively
m1 = a01; π1 = 0
for j = 2 to n do
mj ← max0≤i<j mi + aij
πj ← argmax0≤i<j mi + aij
f ⋆ = mn

Backward: follow backpointers
y⋆ = []; j ← n
while j > 0 do
y⋆ = [(πj , j)] + y⋆

j = πj

Analogously, we can obtain a Forwardalgorithm for logZ : exercise for you.

80/∞

Dynamic programming: DAG formulation

0 1 2 3 4 5

Nodes: one per fencepost. V = {0, 1, . . . , n}.
Edges: one per segment.
E = {(i , j) : 0 ≤ i < j ≤ n}.
Topologic order?

Any path from 0 to n correspondsto a segmentation of the sequence.

Viterbi for segmentation

input: segment scores A ∈ Òn×n

Forward: compute recursively
m1 = a01; π1 = 0
for j = 2 to n do
mj ← max0≤i<j mi + aij
πj ← argmax0≤i<j mi + aij
f ⋆ = mn

Backward: follow backpointers
y⋆ = []; j ← n
while j > 0 do
y⋆ = [(πj , j)] + y⋆

j = πj

Analogously, we can obtain a Forwardalgorithm for logZ : exercise for you.

80/∞

Dynamic programming: DAG formulation

0 1 2 3 4 5

Nodes: one per fencepost. V = {0, 1, . . . , n}.
Edges: one per segment.
E = {(i , j) : 0 ≤ i < j ≤ n}.
Topologic order?
Any path from 0 to n correspondsto a segmentation of the sequence.

Viterbi for segmentation

input: segment scores A ∈ Òn×n

Forward: compute recursively
m1 = a01; π1 = 0
for j = 2 to n do
mj ← max0≤i<j mi + aij
πj ← argmax0≤i<j mi + aij
f ⋆ = mn

Backward: follow backpointers
y⋆ = []; j ← n
while j > 0 do
y⋆ = [(πj , j)] + y⋆

j = πj

Analogously, we can obtain a Forwardalgorithm for logZ : exercise for you.

80/∞

Dynamic programming: DAG formulation

0 1 2 3 4 5

Nodes: one per fencepost. V = {0, 1, . . . , n}.
Edges: one per segment.
E = {(i , j) : 0 ≤ i < j ≤ n}.
Topologic order?
Any path from 0 to n correspondsto a segmentation of the sequence.

Viterbi for segmentation

input: segment scores A ∈ Òn×n

Forward: compute recursively
m1 = a01; π1 = 0
for j = 2 to n do
mj ← max0≤i<j mi + aij
πj ← argmax0≤i<j mi + aij
f ⋆ = mn

Backward: follow backpointers
y⋆ = []; j ← n
while j > 0 do
y⋆ = [(πj , j)] + y⋆

j = πj

Analogously, we can obtain a Forwardalgorithm for logZ : exercise for you.

80/∞

Dynamic programming: DAG formulation

0 1 2 3 4 5

Nodes: one per fencepost. V = {0, 1, . . . , n}.
Edges: one per segment.
E = {(i , j) : 0 ≤ i < j ≤ n}.
Topologic order?
Any path from 0 to n correspondsto a segmentation of the sequence.

Viterbi for segmentation

input: segment scores A ∈ Òn×n

Forward: compute recursively
m1 = a01; π1 = 0
for j = 2 to n do
mj ← max0≤i<j mi + aij
πj ← argmax0≤i<j mi + aij
f ⋆ = mn

Backward: follow backpointers
y⋆ = []; j ← n
while j > 0 do
y⋆ = [(πj , j)] + y⋆

j = πj

Analogously, we can obtain a Forwardalgorithm for logZ : exercise for you.

80/∞

Dynamic programming: DAG formulation

0 1 2 3 4 5

Nodes: one per fencepost. V = {0, 1, . . . , n}.
Edges: one per segment.
E = {(i , j) : 0 ≤ i < j ≤ n}.
Topologic order?
Any path from 0 to n correspondsto a segmentation of the sequence.

Viterbi for segmentation

input: segment scores A ∈ Òn×n

Forward: compute recursively
m1 = a01; π1 = 0
for j = 2 to n do
mj ← max0≤i<j mi + aij
πj ← argmax0≤i<j mi + aij
f ⋆ = mn

Backward: follow backpointers
y⋆ = []; j ← n
while j > 0 do
y⋆ = [(πj , j)] + y⋆

j = πj

Analogously, we can obtain a Forwardalgorithm for logZ : exercise for you.

80/∞

Dynamic programming: DAG formulation

0 1 2 3 4 5

Nodes: one per fencepost. V = {0, 1, . . . , n}.
Edges: one per segment.
E = {(i , j) : 0 ≤ i < j ≤ n}.
Topologic order?
Any path from 0 to n correspondsto a segmentation of the sequence.

Viterbi for segmentation

input: segment scores A ∈ Òn×n

Forward: compute recursively
m1 = a01; π1 = 0
for j = 2 to n do
mj ← max0≤i<j mi + aij
πj ← argmax0≤i<j mi + aij
f ⋆ = mn

Backward: follow backpointers
y⋆ = []; j ← n
while j > 0 do
y⋆ = [(πj , j)] + y⋆

j = πj

Analogously, we can obtain a Forwardalgorithm for logZ : exercise for you.
80/∞

Extension 1: Bounded segment length

0 1 2 3 4 5

• can be much faster if we limit segment lengts to L ≪ n.
• in terms of the DAG: discard edges ij where j − i > L

• exercise: how does this impact the complexity of Viterbi?
81/∞

Extension 1: Bounded segment length

0 1 2 3 4 5

• can be much faster if we limit segment lengts to L ≪ n.
• in terms of the DAG: discard edges ij where j − i > L

• exercise: how does this impact the complexity of Viterbi?
81/∞

Extension 2: Labeled segments

PER
ORG
NONE

• each segment also receives a label (e.g., PERSON, ORGANIZATION, NONE...)
• the labels are independent given the cuts: for any two nodes in the DAG, weonly need to pick the best edge between them.

82/∞

Extension 3: Labeled + transitions

• drawing inspiration from sequence tagging: what if we want a reward/penaltyfor consecutive PERSON→ORGANIZATION segments?
• labels no longer independent given cuts.
• still solvable via DP, but must keep track of transitions.
• essentially a combination of the sequence tagging DAGand the segmentation DAG.

83/∞

Segmentation structure: Summary

• Segmentations of a length-n sequence: O (2n) possible segmentations, O (n2)possible segments.
• Dynamic programming gives polynomial-time probabilistic segmentationmodels.
• Extensions can accommodate maximum lengths, labels, transitions.

84/∞

Tagging and segmentation: Historical notes

The model we derived for sequence tagging was first proposed (with non-neuralfeatures) under the name “linear chain conditional random field” (Lafferty et al.,2001) and is often informally just called “CRF”; this is confusing.
The segmentation model is technically also a CRF, often called semi-Markov CRF orsemi-CRF attributed to Sarawagi and Cohen (2004), to the best of my knowledgethe first attestation of the Viterbi algorithm in this model is due to Bridle andSedgwick (1977). However this conference paper is garbled in the IEEE onlinearchive and can only be found uncorrupted in libraries. It is also (unreferenced) oneof the teaching examples of DP in Cormen et al. (2009).

85/∞

Structure Prediction
1 Overview
2 Structured inputs

Recap: Encoding sequences. RNN, CNN, transformer
Encoding graphs

3 Structured outputs

Probabilistic models of structures
Directed acyclic graphs
Algorithms for paths in DAGs: Maximization, probabilities, sampling
Application: Sequence tagging
Application: Sequence segmentation
Evaluating structured outputs

86/∞

Evaluation (Jurafsky and Martin, 2024, Sec. 4.7)

Well, what would we do in theunstructured case? Notation: Iverson Bracket

JpK =

{
1, p is true,
0, otherwise.

• Accuracy:
What fraction of test cases are correctly classified?

Acc = 1
N

N∑
i=1

Jy (i) = ŷ (i)K

87/∞

Evaluation
Well, what would we do in the unstructured case?
• Per-class Precision:

What fraction of the test cases predicted as class c are correctly predicted?
P(c) =

∑N
i=1Jy

(i) = c&y (i) = ŷ (i)K∑N
i=1Jŷ (i) = cK

• Per-class Recall:
What fraction of the test cases from class c are correctly predicted?

R(c) =

∑N
i=1Jy

(i) = c&y (i) = ŷ (i)K∑N
i=1Jy (i) = cK

• Per-class F1 score: F1,(c) = 2(P−1c + R−1c)−1Balances precision and recall (harmonic mean).
Binary clf.: usual (and intuitive) to only compute P/R/F for the “positive” class.

88/∞

Evaluation

Another way to think about P/R/F:
For class c ,
• TP(c) : true positives: y (i) = c and ŷ (i) = c .
• FP(c) : false positives: y (i) , c and ŷ (i) = c .
• FN(c) : false negatives: y (i) = c and ŷ (i) , c .
• TN(c) : true negatives: y (i) , c and ŷ (i) , c .

TP TNFP FN

Then,
P(c) =

TP(c)
TP(c) + FP(c)

R(c) =
TP(c)

TP(c) + FN(c)
Acc(c) = 1

N

∑
c

TP(c) + TN(c)

89/∞

Evaluation

Macro-average P (or R,F) score over classes
• weighted (by class frequency): denoting
Nc =

∑N
i=1Jy

(i) = cK,
K∑
c=1

Nc

N
P(c)

• unweighted:
1
K

K∑
c=1

P(c)

Micro-average:
First add up TP, FP, FN, TN over classes.Then compute P/R/F for this “total” class.

Be explicit and thoughtful!
For instance:
many rare classes that are veryeasy to recognize -> unweighted

F1 would give an overlyoptimistic summary close to 1.
class proportions will change attest time or performance shouldbe equally good on all classes,unweighted can make moresense!

90/∞

Structured evaluation: POS tagging
For sequential data, accuracy already becomes more complicated:
sequence-level?

Accseq =

∑N
i=1Jy (i) = ŷ (i)K

Nor (micro-averaged) tag accuracy? (writing n (i) = |y (i) |):
Acctag =

∑N
i=1

∑n (i)
j=1Jy (i)

j
= ŷ
(i)
j

K∑N
i=1 n

(i)

(could also imagine a macro-averaged version, but it’s not meaningful here)
Example:
true: PRO VERB NUM NOUN ADV
pred: PRO VERB NUM NOUN PRO
words: there are 70 children there
true: INTJ
pred: X
words: eeeeek

Accseq =
0
2
= 0

Acctag = 4
6
= 0.667

91/∞

Structured evaluation: Segmentations
0 1 2 3 4 5 6 7 8 9 10 11

c a t ’ s c l a w s

Gold segments: y = [(0, 3), (3, 5), (5, 6), (6, 11)]Predicted: ŷ = [(0, 4), (4, 5), (5, 11)]

The number of pred. and gold segments differ.
We could interpret this as binary clf of cuts, andevaluate cut accuracy or P/R/F.
Not a great idea:above, we correctly got the positive cut at 5.(and correctly said no cut at 1,2,. . .)
But no correct segments were returned!

Cut-level eval might be meaningful for someapplications, but for word (or speech)segmentation it seems misleading.

Segment-level P/R/F (Sproat and Emerson, 2003):
True positive segments (appearing both in y and ŷ).False positive segments (in ŷ but not in y)False negative segments (in y but not in ŷ)
P = TP

TP+FP = n. correctly predicted segmentsn. predicted segments
R = TP

TP+FN = n. correctly predicted segmentsn. gold segmentsFor this prediction, both are zero.
More advanced metrics: overlap-aware, or“out-of-vocabulary” rates on held-out data.

92/∞

Structured evaluation: Segmentations
0 1 2 3 4 5 6 7 8 9 10 11

c a t ’ s c l a w s

Gold segments: y = [(0, 3), (3, 5), (5, 6), (6, 11)]Predicted: ŷ = [(0, 4), (4, 5), (5, 11)]

The number of pred. and gold segments differ.
We could interpret this as binary clf of cuts, andevaluate cut accuracy or P/R/F.
Not a great idea:above, we correctly got the positive cut at 5.(and correctly said no cut at 1,2,. . .)
But no correct segments were returned!

Cut-level eval might be meaningful for someapplications, but for word (or speech)segmentation it seems misleading.

Segment-level P/R/F (Sproat and Emerson, 2003):
True positive segments (appearing both in y and ŷ).False positive segments (in ŷ but not in y)False negative segments (in y but not in ŷ)
P = TP

TP+FP = n. correctly predicted segmentsn. predicted segments
R = TP

TP+FN = n. correctly predicted segmentsn. gold segmentsFor this prediction, both are zero.
More advanced metrics: overlap-aware, or“out-of-vocabulary” rates on held-out data.

92/∞

Structured evaluation: Labeled segmentations

Neil Armstrong visited the moon on July 20, 1969.
Neil Armstrong visited the moon on July 20, 1969.

PER LOC DATE
PER PER DATE DATE

Gold segments:{ (PER, 0, 2), (LOC, 3, 5), (DATE, 6, 11)}
Pred segments:{ (PER, 0, 2), (PER, 3, 5), (DATE, 6, 9),(DATE, 9, 11)}
TP = {(PER, 0, 2)}
FP = {(PER, 3, 5), (DATE, 6, 9), (DATE, 9, 11)}
FN = {(LOC, 3, 5), (DATE, 6, 11)}

P = 1/1 + 3 = .25 R = 1/1 + 2 = .33 F1 = .2845

This is the standard way to evaluatechunking/NER (Tjong Kim Sang and Buchholz,2000; Tjong Kim Sang, 2002)
Per-class P/R/F, and adding “unlabeled P/R/F”possible, but not standard.
Note: segment accuracy is not useful:the set TN would contain almost all possiblesegments.

93/∞

Summary

• Structured objects are made of smaller parts that can interact in a largenumber of combinations.
• This combinatorial nature adds complexity to evaluation and learning, but alsogives us rich, powerful representations.
• We’ve seen how to encode some structures into feature vectors, taking theserelationships and interactions into account.
• We’ve seen how to predict structures, by representing them as paths in DAGsand using dynamic programming algorithms.
• We built such models for sequence tagging and segmentations. Otherstructures can be modeled in this way too, and some cannot. My full course onthis at https://vene.ro/mlsd goes deeper.

94/∞

https://vene.ro/mlsd

References I

Baum, Leonard E. (1972). “An inequality and associated maximization techniquein statistical estimation of probabilistic functions of a Markov process”. In.Bellman, Richard (1954). “The theory of dynamic programming”. In: Bulletin of
the American Mathematical Society 60.6, pp. 503–515.Bridle, J. and N. Sedgwick (1977). “A method for segmenting acoustic patterns,with applications to automatic speech recognition”. In: ICASSP ’77. IEEE
International Conference on Acoustics, Speech, and Signal Processing. Vol. 2,pp. 656–659.Cormen, Thomas H et al. (2009). Introduction to algorithms (third edition). MITpress.Ferguson, JD (1980). “Application of hidden Markov models to text andspeech”. In: Princeton, NJ), IDA-CRD.

95/∞

References II
Frühwirth-Schnatter, Sylvia (1994). “Data augmentation and dynamic linearmodels”. In: Journal of Time Series Analysis 15.2, pp. 183–202. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9892.1994.tb00184.x.Goldberg, Yoav (2017). Neural Network Methods in Natural Language Processing.Morgan & Claypool.Hamilton, William L. (2020). Graph Representation Learning. Synthesis Lectureson Human Language Technologies. Morgan & Claypool.Huang, Liang (Aug. 2008). “Advanced Dynamic Programming in Semiring andHypergraph Frameworks”. In: Coling 2008: Advanced Dynamic Programming in
Computational Linguistics: Theory, Algorithms and Applications - Tutorial notes.Ed. by Liang Huang. Manchester, UK: Coling 2008 Organizing Committee,pp. 1–18.

96/∞

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9892.1994.tb00184.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9892.1994.tb00184.x

References III
Jurafsky, Daniel and James H. Martin (2024). Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition with Language Models. 3rd. Online manuscript released August 20,2024.Lafferty, John, Andrew McCallum, Fernando Pereira, et al. (2001). “Conditionalrandom fields: Probabilistic models for segmenting and labeling sequence data”.In: Icml. Vol. 1. 2. Williamstown, MA, p. 3.Mohri, Mehryar (2002). “Semiring frameworks and algorithms forshortest-distance problems”. In: J. Autom. Lang. Comb. 7.3, pp. 321–350.Murphy, Kevin P. (2022). Probabilistic Machine Learning: An introduction. MITPress.Rabiner, Lawrence R (n.d.). First-hand: The Hidden Markov Model.
https://ethw.org/First-Hand:The_Hidden_Markov_Model.

97/∞

https://ethw.org/First-Hand:The_Hidden_Markov_Model

References IV
Sarawagi, Sunita and William W Cohen (2004). “Semi-Markov ConditionalRandom Fields for Information Extraction”. In: Advances in Neural Information
Processing Systems. Ed. by L. Saul, Y. Weiss, and L. Bottou. Vol. 17. MIT Press.Smith, Noah A. (2011). Linguistic Structure Prediction. Synthesis Lectures onHuman Language Technologies. Morgan & Claypool.Sproat, Richard and Thomas Emerson (July 2003). “The First InternationalChinese Word Segmentation Bakeoff”. In: Proceedings of the Second SIGHAN
Workshop on Chinese Language Processing. Sapporo, Japan: Association forComputational Linguistics, pp. 133–143.Tjong Kim Sang, Erik F. (2002). “Introduction to the CoNLL-2002 Shared Task:Language-Independent Named Entity Recognition”. In: COLING-02: The 6th
Conference on Natural Language Learning 2002 (CoNLL-2002).Tjong Kim Sang, Erik F. and Sabine Buchholz (2000). “Introduction to theCoNLL-2000 Shared Task Chunking”. In: Fourth Conference on Computational
Natural Language Learning and the Second Learning Language in Logic Workshop.

98/∞

References V
Viterbi, A. (1967). “Error bounds for convolutional codes and an asymptoticallyoptimum decoding algorithm”. In: IEEE Transactions on Information Theory 13.2,pp. 260–269.

99/∞

	Overview
	Structured inputs
	Recap: Encoding sequences. RNN, CNN, transformer
	Encoding graphs

	Structured outputs
	Probabilistic models of structures
	Directed acyclic graphs
	Algorithms for paths in DAGs: Maximization, probabilities, sampling
	Application: Sequence tagging
	Application: Sequence segmentation
	Evaluating structured outputs

	References

