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Rich Underlying Structure

A disastrous show of pompous and inconsequential gibberish, garish
visuals and tedious storytelling
themadmovieman 21 December 2019

I've got nothing against movie musicals, director Tom Hooper, or even anybody who's a
part of making this film. But goodness me, Cats is an absolute monstrosity. Garish, non-
sensical, boring and everything in between, it's a pompous and pointless musical that
plays out with barely a redeeming feature, proving one of the most unbearable cinema
experiences I've had in a very long time.

While | haven't been a big fan of Hooper's work in the past, particularly Les Misérables,
Cats pales in comparison to anything the director has made before, failing on all levels in
its pathetic attempts to provide even a semblance of fun, magical theatre, and instead
staggering along through its repetitive and frankly tedious story on its way to a terrible
ending that can't come soon enough.
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Rich Underlying Structure

relationships
e.g., dependency
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Most of this structure is hidden.
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speech objects transition graphs
(Andre-Obrecht, 1988) (Long etal., 2015) (Kipf, Pol, et al., 2020)
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But we'll focus on NLP.
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How to select an item from a set?
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How to select an item from a set?

input (] p output
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Ideas: sampling / fake gradients // relax p.
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Gradients Through Choices

Three directions

¢ sampling: make p stochastic; p ~ Cat(0).

oE
then, a[a)/] # O (Mohamed et al., 2020)

(but our model is now stochastic, high variance, ..

)
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(but our model is now stochastic, high variance, ...)

¢ surrogate (fake) gradients:
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¢ relaxation: make p continuous but constrained.
Works well when possible. « this talk!
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Argmax vs. Softmax
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A Softmax Origin Story

A={peRN:p>0 1"p=1}
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Smoothed Max Operators

T (0) = argmaxp ' 0 - Q(p) #
peA

(Niculae and Blondel, 2017)
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(Niculae and Blondel, 2017)

Smoothed Max Operators

T (0) = argmaxp ' 0 - Q(p)

peA pi
e argmax: Q(p)=0 (no smoothing)
e softmax: Q(p)=2pjlogp; V= 61
e sparsemax: Q(p) =¥2||p||3 001 @
a-entmax: Q(p) =Ya(a-1) X p [3.0.71 @
[ J
.3,.2,.5]

Tsallis (1988); a generalized entropy (Griinwald and Dawid, 2004)
(Blondel, Martins, and Niculae 2019a;
Peters, Niculae, and Martins 2019;
Correia, Niculae, and Martins 2019)
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Sparsemax
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Computation:
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0i > 6; = pi 2 p;
O(d) via partial sort

(Held et al., 1974; Brucker, 1984; Condat, 2016)
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Sparsemax

sparsemax(0) = argmaxp ' @ - 1/2|Ip||2

pEA
— 2
= argmin||p - 0|2
[1YYAN
Computation: Backward pass:
p* = [e - T1]+ -’sparsemax d|ag( ) - ESST
8i > 6 = pi = p; whereS—{j:pj>0},
O(d) via partial sort si=[i€S]
(Held et al., 1974; Brucker, 1984; Condat, 2016) (Martins and Astudillo, 2016)
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Sparsemax

sparsemax(0) = argmaxp ' @ - 1/2|Ip||2

pEA
— 2
=argmin||p - 6|5
pEA
Computation: Backward pass:
p*=[6- argmin differentiation iag(s) - LssT
PPN (Colson et al., 2007; Gould et al., 2016) P >I«3I}
I f] : J ’
0(d) via pa also (Amos and Kolter, 2017) ) S

(Held et al., 1974; Brucker, 1984; Condat, 2016) (Martins and Astudillo, 2016)
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Some applications:

sparse attention sparse losses (& seqg2seq)
(Martins and Astudillo, 2016; Correia, Niculae, and Martins, 2019) (Blondel et al., 2019a; Peters et al., 2019)
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Structured Prediction
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Structured Prediction
is essentially a (very high-dimensional) argmax

input
X

There are exponentially
many structures

(@ cannot fit in memory!)
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Factorization Into Parts
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argmax argmaxp' @ MAP argmaxpu ' n
peA MEM

e.g. dependency parsing — Chu-Liu/Edmonds
matching — Kuhn-Munkres
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argmax argmaxp' @ MAP argmaxpu ' n

°
peA HEM

softmax argmaxp' @ + H(p) marginals argmaxpu ' n +H(u) o
peA MEM

e.g. sequence labeling — forward-backward
(Rabiner, 1989)

As attention: (Kim et al., 2017)
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argmax arg max p'e
peA

softmax arg maxp' @
peA

MAP arg maxyTn °
MeEM
+H(p) marginals a;;genxjxyTn +Hu) o

e.g. dependency parsing — the Matrix-Tree theorem

(Koo et al., 2007; D. A

. Smith and N. A. Smith, 2007; McDonald and Satta, 2007)

As attention: (Liu and Lapata, 2018)
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argmax argmaxp' @ MAP argmaxpu ' n °

peA HEM
softmax argmaxp' @ + H(p) marginals argmaxpu ' n +H(u) o
peA MEM

e.g. matchings — #P-complete!
(Taskar, 2004; Valiant, 1979)
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(Niculae, Martins, Blondel, and Cardie, 2018)

e argmax argmaxp' @ MAP argmaxpu ' n °
peA MEM

e softmax argmaxp' 0+ H(p) marginals argmaxp ' n + ﬁ(y) °
peA MEM

e sparsemax arg maxp' 0 - 12||p||>  SparseMAP argmaxp ' n - V2||u||? o
peA MEM
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Algorithms for SparseMAP
P =argmaxp ' n - Y2||u|?

linear constraints MGM

(alas, exponentially many!) _/‘

quadratic objective

Conditional Gradient
(Frank and Wolfe, 1956; Lacost pummmmee

41 __: Anar\

® select a new corne
® update the (sparse
® Update rules: var
pairwise
® Quadratic objective: Active Set
(Nocedal and Wright, 1999, Ch. 16.4 & 16.5)
(Wolfe, 1976; Vinyes and Obozinski, 2017)

Active Set achieves
finite & linear convergence!
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linear constraints MGM

(alas, exponentially many!) _/‘

Conditional Gradient Backward pass
(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

® select a new corner of M

quadratic objective

oM
® update the (sparse) coefficients of p an S sparse
® Update rules: vanilla, away-step,
pairwise
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(Nocedal and Wright, 1999, Ch. 16.4 & 16.5)
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(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

® select a new corner of M
® update the (sparse) coefficients of p
® Update rules: vanilla, away-step,
pairwise
® Quadratic objective: Active Set
(Nocedal and Wright, 1999, Ch. 16.4 & 16.5)
(Wolfe, 1976; Vinyes and Obozinski, 2017)

quadratic objective

Backward pass

B_” .
an IS Sparse

computing (Z—Z)T dy

takes O(dim(p) nnz(p*))
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Algorithms for SparseMAP
P =argmaxp ' n - Y2||u|?

linear constraints MGM

(alas, exponentially many!) _/‘

quadratic objective

UL Completely modular: just add MAP ek

(Frank and Wolfe, 1956
® select a new (B

— oM -
e update the (sparse) coefficients of p an 'S SParse
. T
e Update rules: vanilla, away-step, computing (a_ﬂ) dy
pairwise ) on
® Quadratic objective: Active Set takes O(dim(p ) nnz(p*))

(Nocedal and Wright, 1999, Ch. 16.4 & 16.5)
(Wolfe, 1976; Vinyes and Obozinski, 2017)
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SparseMAP Applications

e Sparse alignment attention
(Niculae, Martins, Blondel, and Cardie, 2018)

e Latent TreeLSTM

(Niculae, Martins, and Cardie, 2018)
® As |oss: supervised dependency parsing

(Niculae, Martins, Blondel, and Cardie 2018;
Blondel, Martins, and Niculae 2019b)
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ListOps (Nangia and Bowman, 2018)

Latent Dependency Trees

Arity tagging with latent GCN (Corro and Titov, 2019; Kipf and Welling, 2017)

(max 2 9 (min 4 7 ) 0] )
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ListOps (Nangia and Bowman, 2018)

Latent Dependency Trees

Arity tagging with latent GCN (Corro and Titov, 2019; Kipf and Welling, 2017)

A~

(max 2 9 (min 4 7 ) 0 )
-
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validation F1 score
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o
o
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N

o
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epoch

— Gold tree

— Left-to-right
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validation F1 score

RN

o
o

o
o

o
N

o
N

f/

O 20 40 60 80 100
epoch

— Gold tree

— Latent tree
— Left-to-right
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What if MAP is not
available?



Multiple, Overlapping Factors

e Ve

* dog on wheels

0O @ O
dog— O |
on— @ ()

wheels— O O
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Multiple, Overlapping Factors

* dog on wheels

O @ O
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Multiple, Overlapping Factors

{

dog#»

on#»

O @ O
O @

@ @

O O

wheels—[

TREE

BUDGET

BUDGET

BUDGET

BUDGET
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Multiple, Overlapping Factors

Maximization in factor graphs: NP-hard, even when each factor is tractable.

*{ O @ O subceT
dog{' O @ ||BUDGET
on @ @ ||BUDGET
wheels{ O O BUDGET

TREE




Optimization as Consensus-Seeking

M 1O O O
Hue 1O O O
Mz 1O O O

fa

fo
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Optimization as Consensus-Seeking

H1:3)
Ha.6]

H(7:9

fa
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Hq
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Optimization as Consensus-Seeking

H1:3)
Ha.6]

H(7:9

.

max

i 2N Ky
feFr

fa

fo

s.t.

O

O

O

O OO
O OO
O O|lO

Hq

Hy

K€ M; forfeF
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Optimization as Consensus-Seeking

Hi1:3)
H4.6]

H(7:9

Agreement on overlap:

fa

fo

O O
® O

O

® O
O O

[
[
O

Hq

Hy

Hog,(4:6) =Hp,[4:6] = K [4:6]

K€ M; forfeF
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Optimization as Consensus-Seeking

Hi1:3)
H4.6]

H(7:9

Agreement on overlap:

fa

fo

O O
® O

O

® O
O O

[
[
O

Hq

Hy

Hog,(4:6) =Hp,[4:6] = K [4:6]
st. Cr =My, M€ Ms forfe s

29



LP relaxation (Wainwright and Jordan, 2008) ?ekl ng

the local polytope:

Hy

Agreement on overlap: M 14.6] = Hp,[4:6) = M [4:6]

max anTyf st. Cr =My, M€ Ms forfe s

29



(Niculae and Martins, 2020)

Optimization as Consensus-Seeking

Hi1:3)
H4.6]

H(7:9

Agreement on overlap:

fa

fo

O

O

O

O @|®
O @|®
O @|®

Hq

Hy

Hog,(4:6) =Hp,[4:6] = K [4:6]
st. Cr =My, M€ Ms forfe s
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(Niculae and Martins, 2020)

Optimization as Consensus-Seeking

Hi1:3)
H4.6]

H(7:9

Agreement on overlap:

”r“f f€7:

fa

fo

O

O

O

O @|®
O @|®
O @|®

Hq

Hy

Hog,(4:6) =Hp,[4:6] = K [4:6]
max(anTyf) - 1/2||p||? st. Cip=py, pe € My forfe s

29



(Niculae and Martins, 2020)

Algorithms for LP-SparseMAP

Forward pass

argmax (>, nlpy) - 2llml?
CiHU=H¢ fcF

=arg maxz (nleJf— Y2||Dspgll?)
CrHu=H¢ fer

® Separable objective,
agreement constraints
ADMM in consensus form

® SparseMAP subproblem for each f

30



(Niculae and Martins, 2020)

Algorithms for LP-SparseMAP

Forward pass Backward pass
(Z . ) ) ® Jacobian fixed-point characterization
arg max n. M) - Y2|[pl| T
Cf M= f feF f gfa J‘fa C.) gfa
=arg maXZ(nfTMf‘l/leDfollz) J= .fb 2 g, .fb J
CrM=Mf feF : 0.--"-. g

e Efficient iteration for vijp
® Combines the SparseMAP Jacobians
of each factor

(use specialized impl. when available: many

® Separable objective,
agreement constraints
ADMM in consensus form

® SparseMAP subproblem for each f

commonly used factors derived in paper.) 30



(Niculae and Martins, 2020)

Differentiable Sparse Structured Prediction

©)
©)

BUDGET

[ )
@) BUDGET
BUDGET

OO BUDGET

TREE

fg = FactorGraph()
var = [fg.variable() for i # j] # handwave

fg.add(Tree(var))

for i in range(n):
fg.add(Budget(var (i, :], budget=5)

Factor graphs as a hidden-layer DSL! - fq.1p_sparsemap(n)
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(Niculae and Martins, 2020)

Differentiable Sparse Structured Prediction

©)
©)

BUDGET

[ )
@) BUDGET
BUDGET

OO BUDGET

TREE

fg = FactorGraph()
var = [fg.variable() for i # j] # handwave

fg.add(Tree(var))

for i in range(n):
fg.add(Budget(var (i, :], budget=5)

Factor graphs as a hidden-layer DSL! - fq.1p_sparsemap(n)

If |7 | = 1, recovers SparseMAP.
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(Niculae and Martins, 2020)

Differentiable Sparse Structured Prediction

BUDGET
BUDGET
BUDGET
BUDGET

..O

[ ]
[ 0@
@)

[eX JXe)
@ O
OO0 |

TREE

Factor graphs as a hidden-layer DSL!
If || =1, recovers SparseMAP.

Modular library.
Built-in specialized factors:
® OR, XOR, AND
® OR-with-output
® Budget, Knapsack
® Pairwise

class Factor:
def map(ns): # abstract, private
raise NotImplemented

def sparsemap(ne):
# active set algo, uses self.map

def backward(dus) :
# analytic, uses active set result

class Budget(Factor):
def sparsemap(ng):
# specialized

def backward(dus) :
# specialized

31



BUDGET
BUDGET
BUDGET
BUDGET

..O

[ ]
[ 0@
@)

[eX JXe)
@ O
OO0 |

TREE

Factor graphs as a hidden-layer DSL!
If || =1, recovers SparseMAP.

Modular library.
Built-in specialized factors:
® OR, XOR, AND
® OR-with-output
® Budget, Knapsack
® Pairwise

New factors only require MAP.

(Niculae and Martins, 2020)

Differentiable Sparse Structured Prediction

class Factor:
def map(ns): # abstract, private
raise NotImplemented

def sparsemap(ne):
# active set algo, uses self.map

def backward(dus) :
# analytic, uses active set result

class Budget(Factor):
def sparsemap(ng):
# specialized

def backward(dus) :
# specialized

class Tree(Factor):

def map(n):
# Chu-Liu/Edmonds algo

31



validation F1 score
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f/

O 20 40 60 80 100
epoch

— Gold tree

— Latent tree
— Left-to-right

32



validation F1 score

0.8
0.6 | |

0.4

— Gold tree
— Latent w/ Budget(5)

— Latent tree
ﬁ// — Left-to-right

0.2

O 20 40 60 80 100

epoch
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Structured Attention for Alignments

NLI

input
(P, H)

premise:
hypothesis: A police officer watches a situation closely.
A A
gentleman police
o) overlooking officer
situation closely

J

(Model: decomposable attention (Parikh et al., 2016))

A gentleman overlooking a neighborhood situation.

output

entails
contradicts

neutral
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Structured Attention for Alignments

NN premise: A gentleman overlooking a neighborhood situation.
hypothesis: A police officer watches a situation closely.

input ( ) output
A A

(P, H) gentleman \ police entails

officer Y contradicts

neutral

£+ | overlooking

situation closely

. J

(Model: decomposable attention (Parikh et al., 2016))
33



Structured Attention for Alignments

NLI

input
(P, H)

.

premise:
hypothesis: A police officer watches a situation closely.
A A
gentleman » police
o) overlooking - officer
situation closely

J

(Model: decomposable attention (Parikh et al., 2016))

A gentleman overlooking a neighborhood situation.

output

entails
contradicts

neutral

33



Structured Attention for Alignments

NN premise: A gentleman overlooking a neighborhood situation.
hypothesis: A police officer watches a situation closely.

input ' ] output
A——A
(P, H) gentleman police entails
£+ | overlooking >< officer Fo) contradicts
neutral
situation closely

(Proposed model: global structured alignment.)
33



Structured Alignment Models

matching
O @ O
O O @
® O O

SparseMAP w/ Kuhn-Munkres
(Kuhn, 1955)
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Structured Alignment Models

matching LP-matching
O @ O O||®|]|O
O O @ OllO]||®
® O O @O0

SparseMAP w/ Kuhn-Munkres LP-SparseMAP w/ XORs
(Kuhn, 1955) (equivalent; different solver)



Structured Alignment Models

matching
O @ O
O O @
® O O

SparseMAP w/ Kuhn-Munkres
(Kuhn, 1955)

LP-matching

O||®|]|O
Ol110]||®
@O0

LP-SparseMAP w/ XORs
(equivalent; different solver)

LP-sequence

Of (@] [O
OmMOMm™®
@ (O] |O

additional score
for contiguous alignments
(i,j)=(i+1,j+1)

34



MultiNLI (williams et al., 2017)

72%

70%

68 % .

66% :
softmax matching LP-matching LP-sequence
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a
gentleman
overlooking

a
neighborhood
situation
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a
gentleman
overlooking

a
neighborhood
situation
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A/A

a
police
gentleman gentleman
overlooking i officer
overlooking
a watches
a
neighborhood a
neighborhood

situation

/ situation

/‘ closely
’ \' .

situation
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Conclusions :

gentleman
overlooking
( LRI ' a
oo neighborhood
o situation
(o] v@ 2 & L 2O
L& S
* o S S
o N o*@“ é\@ &
o
LO AF———1A
L coe ) gentleman
overlooking ==
a =<
Differentiable & sparse neighborhood
situation =1 situation

structured inference

L= closely

Generic, extensible, efficient algorithms

for any factor graph O @ Olfsupcer

O @||supcer

Decomposition into meaningful ° ® |ovocer
coarse structures.

OO BUDGET

¥ v.niculaeauva.nl € github.com/deep-spin/lp-sparsemap

# https://vene.ro ¥ avnfrombucharest TREE


mailto:v.niculae@uva.nl
https://github.com/deep-spin/lp-sparsemap
https://vene.ro
https://twitter.com/vnfrombucharest

Extra slides
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Fusedmax

fusedmax(@) = argmaxp' O - 1/2||p||§ - Z lbj = pj-1
peA 2<j<d

=argmin|lp-OlI3+ > Ipj-pj-1l
peA 2<j<d

proxiysed (8) = argmin [[p - O112+ > |pj - pj-1]
peRrd 2<j<d

Proposition: fusedmax(0) = sparsemax(proxfused(e))

(Niculae and Blondel, 2017)

40



— |1 penalty

— tvld penalty

-Fused maX( - ;‘l-'AV!‘! | A=A ground truth |pj _ pj_ll
-1
ProXfysed ( i-1 |

“Fused Lasso” a.k.a. 1-d Total Variation

Proposi

(Tibshirani et al., 2005)
(NICUlae dana pbilonael, £uli/)
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(Danskin, 1966; Prop. B.25 in Bertsekas, 1999)

Danskin’s Theorem
Let ¢ : RY x Z — R, Z c R? compact.
amaxd(x,z) = conv{Vxp(x, z*) | z* € argmax p(x, z)}.
zeZ zeZ

Example: maximum of a vector

41



(Danskin, 1966; Prop. B.25 in Bertsekas, 1999)

Danskin’s Theorem

Let ¢ : RY x Z — R, Z c R? compact.
amaxd(x,z) = conv{Vxp(x, z*) | z* € argmax p(x, z)}.
ZGZ ZGZ

Example: maximum of a vector

dmax6;=3maxp' @
j€d] pEA

S Amaxe(p, 0)

=conv{Veo(p*, 0)}
=conv{p*}

41



(Danskin, 1966; Prop. B.25 in Bertsekas, 1999)

Danskin’s Theorem

Let ¢ : RY x Z — R, Z c R? compact.

amaxd(x,z) = conv{Vxp(x, z*) | z* € argmax p(x, z)}.
ZGZ ZGZ

Example: maximum of a vector

0=t O
dmax6;=3maxp' @
jeld] pEA . 1
=9 , 0
max$(p, 8) /
o -1 0 +1 -1 0 +1

max; 6; {31 | g€ 9omax;6;}

41



Discrete latent variables

So far: a structured hidden layer
Enlan]

Network must handle “soft” combinations of structures.
Fine for attention, but can be limiting.

42



(Correia, Niculae, Aziz, and Martins, 2020)

Latent variable models!

p(y [ x)= > pe(y | h,x) pr(h|x)
heH

= Ep~py(hlx) Po(Y | D, X)

43



(Correia, Niculae, Aziz, and Martins, 2020)

Latent variable models!

p(y |X)= > pg(y | h.X) pm(h | X)

heH \/
= [Eh~pn(h|x) p¢(y | h, x sender

® Emergent communication: h is a word from a big vocabulary. pg(y | h) is expensive.

43



(Correia, Niculae, Aziz, and Martins, 2020)

Latent variable models!

sum over

all possible messages
mz pe(¥ | h, X) pre(h | x)
heH \/
= [Eh~pn(h|x) p¢(y | h, x sender

® Emergent communication: h is a word from a big vocabulary. pg(y | h) is expensive.

receiver
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Latent variable models!

sum over

all possible messages
mz pe(¥ | h, X) pre(h | x)
heH \/
= [Eh~pn(h|x) p¢(y | h, x sender

® Emergent communication: h is a word from a big vocabulary. pg(y | h) is expensive.

receiver

¢ Standard: Monte Carlo gradient estimators (e.g. SFE, Gumbel)
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(Correia, Niculae, Aziz, and Martins, 2020)

Latent variable models!

sum over

all possible messages
mz pe(¥ | h, X) pre(h | x)
heH \/
[Eh~pn(h|x p¢( |h X sender

® Emergent communication: h is a word from a big vocabulary. pg(y | h) is expensive.

receiver

¢ Standard: Monte Carlo gradient estimators (e.g. SFE, Gumbel)

* Idea: parametrize p(h | x) using sparsemax! Sum only over |H| < |H]|.
No bias AND no variance by changing the question
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(Lazaridou et al., 2017; Correia, Niculae, Aziz, et al., 2020)

Emergent Communication
® ... but make it harder: |[H| =256 ®

Method success (%) Dec. calls
Monte Carlo

SFE 33.05 2284 1
NVIL 37.04 z1.61 1
Gumbel 23.51 16,19 1
ST Gumbel 27.42 +13.36 1
Marginalization

44
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Emergent Communication
® ... but make it harder: |[H| =256 ®

Method success (%) Dec. calls
Monte Carlo

SFE 33.05 284 1
NVIL 37.04 z1.61 1
Gumbel 23.51 16,19 1
ST Gumbel 27.42 +13.36 1
Marginalization

Gibbs 93.37 +0.42 256
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(Lazaridou et al., 2017; Correia, Niculae, Aziz, et al., 2020)

Emergent Communication
® ... but make it harder: |[H| =256 ®

Method success (%) Dec. calls
Monte Carlo

SFE 33.05 284 1
NVIL 37.04 1161 1
Gumbel 23.51 16,19 1
ST Gumbel 27.42 +13.36 1
Marginalization

Gibbs 93.37 +0.42 256
Sparse 93.35 -o0.50 3.13z0.48
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Emergent Communication

(Lazaridou et al., 2017; Correia, Niculae, Aziz, et al., 2020)

® ... but make it harder: |[H| =256 ®

Method success (%) Dec. calls
Monte Carlo

SFE 33.05 284 1
NVIL 37.04 1161 1
Gumbel 23.51 16,19 1
ST Gumbel 27.42 +13.36 1
Marginalization

Gibbs 93.37 +0.42 256
Sparse 93.35 -o0.50 3.13z0.48

N. decoder calls

256
— sparsemax
200 | ——SFE, etc
—— Gibbs
100
1 |
50 100
Epoch

44



Limitations

® Mostly (and eventually) very sparse.
But sparsemax(0) = ¥/d 1: fully dense worst case.

® For the same reason, sparsemax cannot handle structured h.

(Correia, Niculae, Aziz, and Martins, 2020)
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Limitations

® Mostly (and eventually) very sparse.
But sparsemax(0) = ¥/d 1: fully dense worst case.

® For the same reason, sparsemax cannot handle structured h.

One solution: top-k sparsemax

k-sparsemax(@)= argmin ||p - 0||§
PEA, |Ipllo<k
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(Correia, Niculae, Aziz, and Martins, 2020)

Limitations

® Mostly (and eventually) very sparse.
But sparsemax(0) = ¥/d 1: fully dense worst case.

® For the same reason, sparsemax cannot handle structured h.

One solution: top-k sparsemax

k-sparsemax(@)= argmin ||p - 0||§
PEA, |Ipllo<k

® Non-convex but easy: sparsemax over the k highest scores (Kyrillidis et al., 2013).
® Top-k oracle available for some structured problems.

® Certificate: if at least one of the top-k h gets p(h) = O, k-sparsemax = sparsemax!
thus, for latent variables: biased early on, but it goes away.
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Dependency TreelLSTM

G G G ¢G> &> &>
The bears eat the pretty ones

(Tai et al., 2015)
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(Tai et al., 2015)
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Dependency TreeLSTM

The bears

eat

the

pretty ones

(Tai et al., 2015)
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Dependency TreeLSTM
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The bears
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(Tai et al., 2015)
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Dependency TreeLSTM

The bears

eat

the

pretty ones

(Tai et al., 2015)

46



Dependency TreeLSTM

The bears

eat

by

the

pretty ones

(Tai et al., 2015)
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Latent Dependency TreeLSTM

(Niculae, Martins, and Cardie, 2018)

input output

X T y

The bears eat the pretty ones
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Latent Dependency TreeLSTM

(Niculae, Martins, and Cardie, 2018)

input output

X T y

The bears eat the pretty ones

heH
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Structured Latent Variable Models

plylx)= > p (vIhx)p (h]x)
heH
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Structured Latent Variable Models

p(y |X)= D pe(y | h x) pn(h | x)
heH
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Structured Latent Variable Models

e.g., a TreeLSTM defined by h

p(y |X)= D pg(y | h x) pn(h | x)
heH
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Structured Latent Variable Models

f e.g., a TreeLSTM defined by h

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier
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Structured Latent Variable Models

sum over e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier

Exponentially large sum!
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Structured Latent Variable Models

sum over e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier
How to define p?

idea 1
idea 2
idea 3
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Structured Latent Variable Models
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sum over e.g., a TreeLSTM defined by h
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Structured Latent Variable Models

sum over e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier

Z ap(y | x)

hert 9T
ideal pg(h|x)=1ifh=h*elseO argmax © d

idea2 pq(h|x) o exp(scorem(h;x))  softmax Lo/ S
idea 3

How to define p?
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Structured Latent Variable Models

sum over

e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier

5 ap(y | x)

he n

How to define p?

(s3]

ideal pg(h|x)=1ifh=h*elseO argmax d
idea2 pq(h|x) o exp(scorem(h;x))  softmax Lo/ S
idea 3 SparseMAP © ©



SparseMAP
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SparseMAP
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* The bears eat the pretty ones

Left-to-right: regular LSTM
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* The bears eat the pretty ones

Flat: bag-of-words-like
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* The bears eat the pretty ones

CoreNLP: off-line parser
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p(y | P, H)=
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CoreNLP Latent

Sentence pair classification (P, H)

> pe(y | hp, i) pa(hp | P) pre(hy | H)

hpeH (P) hyeH (H)

Natural Language Inference (SNLI)
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Sentiment classification (SST)
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LTR Flat CoreNLP Latent

Reverse dictionary lookup

given word description, predict word embedding (Hill et al., 2016)
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Sentiment classification (SST)
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Reverse dictionary lookup
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Sentiment classification (SST) Natural Language Inference (SNLI)
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Syntax vs. Composition Order

CoreNLP parse, p=21.4%

— NN

* lovely and poignant
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Syntax vs. Composition Order

p=22.6%

TN N

* lovely and poignant

CoreNLP parse, p=21.4%

— NN

* lovely and poignant
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Syntax vs. Composition Order

p=15.33%

p=22.6% m

/\K\ * a deep and meaningful film

lovely and poignant p=15.27%

CoreNLP parse, p=21.4% /—/R m

m * a deep and meaningful film

lovely and  poignant CoreNLP parse, p=0%

P

* a deep and meaningful film
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Structured Output Prediction

SparseMAP La(n, ) = mam{ n'u- 1/2||l.l||2}
HE
-nTp+ 2@

Instance of a structured Fenchel-Young loss, like CRF, SVM, etc. (Blondel, Martins, and Niculae, 2019b)
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Structured Output Prediction

SparseMAP La(n, @) = mam{ n'u-Y2|p|?}
ue
-n'@ + 2|
cost-SparseMAP Lh(n, i) =”m€%{ n'p - 12|pll*+o(u, )}
-n'[+ 12|

Instance of a structured Fenchel-Young loss, like CRF, SVM, etc. (Blondel, Martins, and Niculae, 2019b)
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Dependency Parsing
with bi-LSTM features

[Kiperwasser & Goldberg, 2016]

CRF Structured SVM SparseMAP margin
SparseMAP

H English ®Chinese B Vietnamese




CRF Structured SVM SparseMAP margin
SparseMAP

Unlabeled Accuracy (UAS) H English ®Chinese ™ Vietnamese

Universal Dependencies dataset
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Sparse Structured Output Prediction

As models train, inference gets sparser!
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Sparse Structured Output Prediction

Inference captures linguistic ambiguity!

T\ [ ——

* They did a vehicle wrap for my Toyota Venza that looks amazing .

68]




Sparse Structured Output Prediction

Inference captures linguistic ambiguity!

/l \¥ \\/ " J ; \

* the broccoli looks browned around the edges .
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