O

Learning with Sparse Latent Structure

Vlad Niculae University of Amsterdam

Work with: Wilker Aziz, Mathieu Blondel, Claire Cardie,
Goncgalo M. Correia, André Martins, Tsvetomila Mihaylova.

© github.com/deep-spin/lp-sparsemap W avnfrombucharest # https://vene.ro

https://github.com/deep-spin/lp-sparsemap
https://twitter.com/vnfrombucharest
https://vene.ro

Rich Underlying Structure

A disastrous show of pompous and inconsequential gibberish, garish
visuals and tedious storytelling
themadmovieman 21 December 2019

I've got nothing against movie musicals, director Tom Hooper, or even anybody who's a
part of making this film. But goodness me, Cats is an absolute monstrosity. Garish, non-
sensical, boring and everything in between, it's a pompous and pointless musical that
plays out with barely a redeeming feature, proving one of the most unbearable cinema
experiences I've had in a very long time.

While | haven't been a big fan of Hooper's work in the past, particularly Les Misérables,
Cats pales in comparison to anything the director has made before, failing on all levels in
its pathetic attempts to provide even a semblance of fun, magical theatre, and instead
staggering along through its repetitive and frankly tedious story on its way to a terrible
ending that can't come soon enough.

Rich Underlying Structure

A disastrous show of pompous and inconsequential gibberish, garish
/‘ visuals and tedious storytelling

themadmovieman 21 December 2019

title I've gof nothing against piovie musicals, director Tom Hooper, or even anybody who's a
erything in between, it's a pompous and pointless musical that

a redeeming feature, proving one of the most unbearable cinema
author ad in a very long time.

s pales in comparison to anything the director has made before, failing on all levels in
its pathetic attempts to provide even a semblance of fun, magical theatre, and instead
staggering along through its repetitive and frankly tedious story on its way to a terrible
ending that can't come soon enough.

-~

date

body

Rich Underlying Structure

A disastrous show of pompous and inconsequential gibberish, garish
visuals and tedious storytelling
themadmovieman 21 December 2019

I've got nothing against movie musicals, director Tom Hooper, or even anybody who's a
part of making this film /But goodness me, Cats is an absolute monstrosity/Garish, non-

SEgmentahon: sensical, boring and everything in between, it's a pompous and pointless musical that
sentences, plays out with barely a redeeming feature, proving one of the most unbearable cinema
words experiences I've had in a very long time.

s
and so on

While | haven't been a big fan of Hooper's work in the past, particularly Les Misérables,
Cats pales in comparison to anything the director has made before, failing on all levels in
its pathetic attempts to provide even a semblance of fun, magical theatre, and instead
staggering along through its repetitive and frankly tedious story on its way to a terrible
ending that can't come soon enough.

Rich Underlying Structure

A disastrous show of pompous and inconsequential gibberish, garish
visuals and tedious storytelling
themadmovieman 21 December 2019

I've got nothing against movie musicals, director[Tom Hooper] or even anybody who's a

el part of making this ﬁIm/But goodness me[Cats|is an absolute monstrosity/Garish, non-
segmentation: sensical, boring and everything in between, it's a pompous and pointless musical that

sentences, plays out with barely a redeeming feature, proving one of the most unbearable cinema
words experiences I've had in a very long time.

y
and so on

While | haven't been a big fan of[Hooper]s work in the past, particularly[Les Misérables, |
[Cats]pales in comparison to anything the director has made before, failing on all levels in
its pathetic attempts to provide even a semblance of fun, magical theatre, and instead
entities staggering along through its repetitive and frankly tedious story on its way to a terrible
ending that can't come soon enough.

Rich Underlying Structure

relationships
e.g., dependency

A disastrous show of
visuals and tedio
themadmovieman 21

mpous and incon

storytelling
cember 2019

uential gibberish, garish

I've got nothing against movie musicals, director Tom Hooper, or even anybody who's a
part of making this film. But goodness me, Cats is an absolute monstrosity. Garish, non-
sensical, boring and everything in between, it's a pompous and pointless musical that
plays out with barely a redeeming feature, proving one of the most unbearable cinema
experiences I've had in a very long time.

While | haven't been a big fan of Hooper's work in the past, particularly Les Misérables,
Cats pales in comparison to anything the director has made before, failing on all levels in
its pathetic attempts to provide even a semblance of fun, magical theatre, and instead
staggering along through its repetitive and frankly tedious story on its way to a terrible
ending that can't come soon enough.

Rich Underlying Structure

A disastrous show of pompous and inconsequential gibberish, garish
visuals and tedious storytelling
themadmovieman 21 December 2019

I've got nothing against movie musicals, director Tom Hooper, or even anybody who's a
part of making this film. But goodness me, Cats is an absolute monstrosity. Garish, non-
sensical, boring and everything in between, it's a pompous and pointless musical that
plays out with barely a redeeming feature, proving one of the most unbearable cinema
experiences I've had in a very long time.

While | haven't been a big fan of Hooper's work in the past, particularly Les Misérables,
Cats pales in comparison to anything the director has made before, failing on all levels in
its pathetic attempts to provide even a semblance of fun, magical theatre, and instead
staggering along through its repetitive and frankly tedious story on its way to a terrible
ending that can't come soon enough.

Most of this structure is hidden.

Rich Underlying Structure
Widely occuring pattern!

speech objects transition graphs
(Andre-Obrecht, 1988) (Long etal., 2015) (Kipf, Pol, et al., 2020)

Rich Underlying Structure
Widely occuring pattern!

speech objects transition graphs
(Andre-Obrecht, 1988) (Long etal., 2015) (Kipf, Pol, et al., 2020)

But we'll focus on NLP.

Structured Prediction

A~N/N/TON
* dog on wheels

SN

* dog on wheels

AN

* dog on wheels

VERB PREP

NOUN DET

Structured Prediction

N/ N/ N

dog on wheels

SN

dog on wheels

AN

dog on wheels

dog >< hond

wheels — W|elen

dog ~— hond

wheels ~— wielen

dog hond
on X op
wheels wielen

Structured Prediction
B85
O
NS
O

O

b0

Traditional Pipeline Approach

input output

N/ positive

neutral

negative

Traditional Pipeline Approach

input output

N\

positive

o
N (3 (@I @/‘ neutral
B negative

pretrained parser

Deep Learning & Hidden Representations

input

N\

output

positive
neutral

negative

Deep Learning & Hidden Representations

input

N\

e

\

dense vector

output

positive
neutral

negative

Latent Structure Models

input () output

i
N/ . positive

@) neutral
¢ Oé%) ¢ negative

How to select an item
from a set?

How to select an item from a set?

10

How to select an item from a set?

C1
c2

CN

11

How to select an item from a set?

o
2. C1
4. c2
_1.
: [l
—3. CN

11

How to select an item from a set?

o

2. C1

4 C2

|
[EEN
.
© o (@] = (@]

. ..
—3. CN

11

How to select an item from a set?

input (7] output
X . c1 y
_/ C2 \/‘
0 =f(x;w) y =8(p, X;w)

HEETH -

11

How to select an item from a set?

input 0 output
X . c1 y
_/ Co _/
0 =f(x;w)

p

[]

L]

|] y =8(p, X;w)
[]

[]

11

How to select an item from a set?

input 0 output

11

Argmax

=~ [lNE

€1
C2

o HNN

C

op
00

12

Argmax

=~ [lNE

€1
C2

o BN

C

op
00

12

Argmax

=~ [lNE

€1
C2

o NN

C

op
00

12

Argmax

=~ [lNE

€1
C2

o BN

C

op
00

12

Argmax

=~ [lNE

€1
C2

o NN

C

op
00

12

Argmax

o p
C1 III
C2 III
H L]
l]
H ~ N

ap_7
00

12

Argmax

o p
C1 III
C2 III
H L]
l]
H ~ N

ap_7
00

12

Argmax

pl AN
€1
C2

6,-1 65 92I+1 /
CN

HEENN -
HEETN -

op _
00 0

]

How to select an item from a set?

input (] p output
X . c1 .) 4
_/ Co . \/‘
0 = f(x; w)] - IR = g(p, x;w)
N L]
H « B

Ideas: sampling / fake gradients // relax p.

14

Gradients Through Choices

Three directions

¢ sampling: make p stochastic; p ~ Cat(0).

oE
then, a[a)/] # O (Mohamed et al., 2020)

(but our model is now stochastic, high variance, ..

)

15

Gradients Through Choices

Three directions

¢ sampling: make p stochastic; p ~ Cat(0).

oE
then, a[ay] # O (Mohamed et al., 2020)

(but our model is now stochastic, high variance,

¢ surrogate (fake) gradients:

argmax forward, pretend backward inayiova et al, 2020).

Wl

)

15

Gradients Through Choices

Three directions

¢ sampling: make p stochastic; p ~ Cat(0).
then, agE[OY] # O (Mohamed et al., 2020)
(but our model is now stochastic, high variance, ...)

¢ surrogate (fake) gradients:
argmax forward, pretend backward inayiova et al, 2020).
L]

¢ relaxation: make p continuous but constrained.
Works well when possible.

15

Gradients Through Choices

Three directions

¢ sampling: make p stochastic; p ~ Cat(0).
then, agE[OY] # O (Mohamed et al., 2020)
(but our model is now stochastic, high variance, ...)

¢ surrogate (fake) gradients:
argmax forward, pretend backward inayiova et al, 2020).
L]

¢ relaxation: make p continuous but constrained.
Works well when possible. « this talk!

15

Argmax vs. Softmax

6 b1y
H «

C2

1+

7

t > 01
6,-1 62 62+1

p;j = exp(6;)/Z

HEEEN -

H
.
H
H

op

<& =diag(p) -pp"

16

A Softmax Origin Story

A={peRN:p>0 1"p=1}

17

A Softmax Origin Story

A={peRN:p>0 1"p=1}

1.5%

0.57

A Softmax Origin Story

A={peRN:p>0 1"p=1}

1.5%

0.5t
p=[1,0

A Softmax Origin Story

A={peRN:p>0 1"p=1}
1.5%
p=[0,1]

1

0.5t
p=[1,0

A Softmax Origin Story

A={peRN:p>0 1"p=1}

p=[0,1]

p=[Y2 /2]

p=[1,0

0.5 1 1.5

17

1.5%

0.57

A Softmax Origin Story #

A={peRN:p>0 1"p=1}

p=10,1] 1.5

1

p=[Y2 /2]

p=[1,0

0.5 1 1.5

17

1.5%

0.57

A Softmax Origin Story #

A={peRN:p>0 1"p=1}

p=10,1] 1.5

p=[Y2 /2]

p=[1,0

0.5 1 1.5

17

1.5%

0.57

A Softmax Origin Story #

A={peRN:p>0 1"p=1}

p=[0,1]

p=[Y2 /2]

p=[1,0

0.5 1 1.5

17

1.5%

0.57

A Softmax Origin Story #

A={peRN:p>0 1"p=1}

p=10,1] 1.5 p=[0,0,1]

1
p=[1/3, Y3, V3]

p=1[0,1,0]

p=[Y2 /2]

p=[1,0

0.5 1 1.5 1.5

17

A Softmax Origin Story #

— T Fundamental Thm. Lin. Prog.
m,aX 9] - maxp a (Dantzig et al., 1955)
J PEA
1.5%
16
0.5¢
0.5 1 1.5 :
N=2 N=3

17

A Softmax Origin Story #

— T Fundamental Thm. Lin. Prog.
m,aX 9] - maxp a (Dantzig et al., 1955)
J pPEA
134 c0=[2 1.4
16
0.5¢
0.5 1 1.5 :
N=2 N=3

17

A Softmax Origin Story #

— T Fundamental Thm. Lin. Prog.
m,aX 9] - maxp a (Dantzig et al., 1955)
J pPEA
134 c0=[2 1.4
16
0.5¢
0.5 1 1.5 :
N=2 N=3

17

1.5%

0.57

A Softmax Origin Story #

00=[2 1.4

p*=[0,1]

Ta Fundamental Thm. Lin. Prog.
(Dantzig et al., 1955)

1.5

17

1.5%

0.57

A Softmax Origin Story #

00=[2 1.4

p*=[0,1]

— T Fundamental Thm. Lin. Prog.
m,aX 9] = max p a (Dantzig et al., 1955)
J pPEA
)
©0=[7,.1,1.5
1j5

17

1.5%

0.57

A Softmax Origin Story #

00=[2 1.4

p*=[0,1]

— T Fundamental Thm. Lin. Prog.
m,aX 9] = max p a (Dantzig et al., 1955)
J pPEA
)
©0=[7,.1,1.5
1j5

17

1.5%

0.57

A Softmax Origin Story #

00=[2 1.4

p*=[0,1]

— T Fundamental Thm. Lin. Prog.
m,aX 9] = max p a (Dantzig et al., 1955)
J pPEA
)
00=[7,.1,1.5]
p*=[0,0,1]
0.5
>
£5 s

17

Smoothed Max Operators

T (0) = argmaxp ' 0 - Q(p) #
peA

(Niculae and Blondel, 2017)

18

Smoothed Max Operators

(Niculae and Blondel, 2017)

p1
T (0) = argmaxp ' 0 - Q(p) -
peA
e argmax: Q(p)=0 (no smoothing) 0 — 0,
-1 0 1
[0.0,1] @

A

18

(Niculae and Blondel, 2017)

Smoothed Max Operators

p
T (0) = argmaxp ' O - Q(p) . S
peA
e argmax: Q(p)=0 (no smoothing) 0 s 0,

e softmax: Q(p) =2 pjlogp;

18

Smoothed Max Operators

(Niculae and Blondel, 2017)

p1
T (0) = argmaxp ' 0 - Q(p)
peA
e argmax: Q(p)=0 (no smoothing) 0 g s 0,
-1 0 1
e softmax: Q(p)=ijj log pj 0,01 @
@ sparsemax: Q(p)=1/2||p||§ [3,0,.7] @
[J
[.3,.2,.5]
AN

(Martins and Astudillo, 2016)

18

(Niculae and Blondel, 2017)

Smoothed Max Operators

T (0) = argmaxp ' 0 - Q(p)

peA pi
e argmax: Q(p)=0 (no smoothing)
e softmax: Q(p)=2pjlogp; V= 61
e sparsemax: Q(p) =¥2||p||3 001 @
a-entmax: Q(p) =Ya(a-1) X p [3.0.71 @
[J
.3,.2,.5]

Tsallis (1988); a generalized entropy (Griinwald and Dawid, 2004)
(Blondel, Martins, and Niculae 2019a;
Peters, Niculae, and Martins 2019;
Correia, Niculae, and Martins 2019)

18

Sparsemax

sparsemax(0) = argmaxp ' @ - 1/2||p||§
pEA
- argmin [Ip - O]
[1YYAN

19

Sparsemax

sparsemax(0) = argmaxp ' @ - 1/2|Ip||§

pEA
= arg min [|p - 612
[1YYAN
Computation:
p* = [0 - T1]+

0i > 6; = pi 2 p;
O(d) via partial sort

(Held et al., 1974; Brucker, 1984; Condat, 2016)

19

Sparsemax

sparsemax(0) = argmaxp ' @ - 1/2|Ip||2

pEA
— 2
= argmin||p - 0|2
[1YYAN
Computation: Backward pass:
p* = [e - T1]+ -’sparsemax d|ag() - ESST
8i > 6 = pi = p; whereS—{j:pj>0},
O(d) via partial sort si=[i€S]
(Held et al., 1974; Brucker, 1984; Condat, 2016) (Martins and Astudillo, 2016)

19

Sparsemax

sparsemax(0) = argmaxp ' @ - 1/2|Ip||2

pEA
— 2
=argmin||p - 6|5
pEA
Computation: Backward pass:
p*=[6- argmin differentiation iag(s) - LssT
PPN (Colson et al., 2007; Gould et al., 2016) P >I«3I}
I f] : J ’
0(d) via pa also (Amos and Kolter, 2017)) S

(Held et al., 1974; Brucker, 1984; Condat, 2016) (Martins and Astudillo, 2016)

19

Some applications:

sparse attention sparse losses (& seqg2seq)
(Martins and Astudillo, 2016; Correia, Niculae, and Martins, 2019) (Blondel et al., 2019a; Peters et al., 2019)

the-

coalition- 66.4%
for dor—-a-w-=>e—-d-</s>
international 32.2%
aid- n—</s>
should 1.4%
</s>

read-
it
carefully

<EOS>-

O 0 NG N
’b\} Q 'b,\oﬂ\b@\ ’be
[8) /5,\' X
C & K

20

Structured Prediction

finally

Structured Prediction
is essentially a (very high-dimensional) argmax

input (7] output
X C1 C2) 4
. N -

N7 -

H B
HEETHN -

CN

21

Structured Prediction
is essentially a (very high-dimensional) argmax

output
O
7%

er LA

input
X

N7

o©
o)

HEENN -
@)
0]
HEETHN -

o -
O .

21

Structured Prediction
is essentially a (very high-dimensional) argmax

input
X

There are exponentially
many structures

(@ cannot fit in memory!)

21

*

Factorization Into Parts

N

dog on wheels

22

*

Factorization Into Parts

N

dog

on

wheels

dog—

on—

wheels—

dog

O @

on wheels
® O
o O

o

O

22

Factorization Into Parts

/A/\ dog on wheels
* dog on wheels O @ O
dog— O O
on—| @ o
wheels—| O O

TREE

Factorization Into Parts

/A/\ dog on wheels
* dog on wheels O @ O
dog— O O
on—| @ o

wheels—| O O

TREE

a, = [010 100 001]

22

Factorization Into Parts

/[\\ N dog on wheels
* dog on wheels O @ O
«—dog (1 ofo) 1 T .17 dog— O O
on-dog 0 111 2
wheels—dog 0] 0|0 -1 on— ‘ ‘
*—0Nn 0 1)1 3
A= dog-on 1 ... 0|0].. = 8
wheels—on 0] 0|0 ! 1 HNEELE— O O
»—wheels [O (O (¢} =8
dog—wheels | O 110 2 TREE
on-wheels L 1 o 1 [-1] a, =[010 100 001]

Factorization Into Parts

dog hond
Ve Y on%op

* dog on wheels

wheels wielen

x—dog (1 o (0] ! dog—hond (1 0)o 1 [1
on—dog 0] 111 2 dog—op 0] 11 2
wheels—dog 0 0|0 -1 dog—wielen | 0 0|0 -1
*—0N 0 111) on—hond 0] 0jo 3
A= dog—on 1 010}... |[n=| .8 A= on—op 1..l0jo ... |n=| .8
wheels—on 0] 010 1 on—wielen | O 1]1 1
«—wheels | 0 010 -.3 wheels—hond | 0 1/0 =o)
dog—wheels | O 110 2 wheels—op 0 0|0 .2
on-wheels L 1 ow) | L1l wheels—wielen { 1 0J1 -1

) i L

22

M:= conv{ah h e 7‘[}

23

M:= conv{ah:heﬂ}
={Ap:pe A}

23

M:= conv{ah:heﬂ}
={Ap:pe A}

= {[EH~p ay :p € A}

23

argmax arg max p'o
peA

23

argmax arg max p'e
peA

MAP arg maxyTn
MEM

8

23

argmax argmaxp' @ MAP argmaxpu ' n
peA MEM

e.g. dependency parsing — Chu-Liu/Edmonds
matching — Kuhn-Munkres

23

argmax argmaxp' @
peA

softmax argmaxp' @ + H(p)
peA

MAP arg maxyTn
MEM

8

23

argmax arg max p'e
peA

softmax argmaxp' @ + H(p)
peA

MAP arg maxyTn °
HEM

marginals argmaxpu ' n +H(u) o
HEM

23

argmax argmaxp' @ MAP argmaxpu ' n

°
peA HEM

softmax argmaxp' @ + H(p) marginals argmaxpu ' n +H(u) o
peA MEM

e.g. sequence labeling — forward-backward
(Rabiner, 1989)

As attention: (Kim et al., 2017)

23

argmax arg max p'e
peA

softmax arg maxp' @
peA

MAP arg maxyTn °
MeEM
+H(p) marginals a;;genxjxyTn +Hu) o

e.g. dependency parsing — the Matrix-Tree theorem

(Koo et al., 2007; D. A

. Smith and N. A. Smith, 2007; McDonald and Satta, 2007)

As attention: (Liu and Lapata, 2018)

23

argmax argmaxp' @ MAP argmaxpu ' n °

peA HEM
softmax argmaxp' @ + H(p) marginals argmaxpu ' n +H(u) o
peA MEM

e.g. matchings — #P-complete!
(Taskar, 2004; Valiant, 1979)

23

® argmax arg maxp' 6
peA

e softmax argmaxp' @ +H(p)
peA

e sparsemax argmaxp ' 0 - 1/2||p||?
peA

MAP arg maxyTn °
MEM

marginals argmaxpu 'n +H(u) o
HEM

23

(Niculae, Martins, Blondel, and Cardie, 2018)

e argmax argmaxp' @ MAP argmaxpu ' n °
peA MEM

e softmax argmaxp' 0+ H(p) marginals argmaxp ' n + ﬁ(y) °
peA MEM

e sparsemax arg maxp' 0 - 12||p||> SparseMAP argmaxp ' n - V2||u||? o
peA MEM

23

Algorithms for SparseMAP

p* =argmaxp ' n - 12||p|?
MHEM

24

Algorithms for SparseMAP
P =argmaxp ' n - Y2||u|?

linear constraints MGM

(alas, exponentially many!) _/‘

quadratic objective

24

Algorithms for SparseMAP
P =argmaxp ' n - Y2||u|?

linear constraints MGM

(alas, exponentially many!) _/‘

Conditional Gradient
(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

quadratic objective

24

Algorithms for SparseMAP
P =argmaxp ' n - Y2||u|?

linear constraints MGM

(alas, exponentially many!) _/‘

Conditional Gradient
(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

® select a new corner of M

quadratic objective

24

Algorithms for SparseMAP
P =argmaxp ' n - Y2||u|?

linear constraints MGM

(alas, exponentially many!) _/‘

Conditional Gradient
(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

® select a new corner of M

quadratic objective

ay- = arg maxyT (n —[.l(t_l))

HEM N—— —/

n

24

Algorithms for SparseMAP
P =argmaxp ' n - Y2||u|?

linear constraints MGM

(alas, exponentially many!) _/‘

Conditional Gradient
(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)
® select a new corner of M
® update the (sparse) coefficients of p

® Update rules: vanilla, away-step,
pairwise

quadratic objective

24

Algorithms for SparseMAP
P =argmaxp ' n - Y2||u|?

linear constraints MGM

(alas, exponentially many!) _/‘

Conditional Gradient
(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

® select a new corner of M
® update the (sparse) coefficients of p
® Update rules: vanilla, away-step,
pairwise
® Quadratic objective: Active Set
(Nocedal and Wright, 1999, Ch. 16.4 & 16.5)
(Wolfe, 1976; Vinyes and Obozinski, 2017)

quadratic objective

24

Algorithms for SparseMAP
P =argmaxp ' n - Y2||u|?

linear constraints MGM

(alas, exponentially many!) _/‘

quadratic objective

Conditional Gradient
(Frank and Wolfe, 1956; Lacost pummmmee

41 __: Anar\

® select a new corne
® update the (sparse
® Update rules: var
pairwise
® Quadratic objective: Active Set
(Nocedal and Wright, 1999, Ch. 16.4 & 16.5)
(Wolfe, 1976; Vinyes and Obozinski, 2017)

Active Set achieves
finite & linear convergence!

24

Algorithms for SparseMAP
P =argmaxp ' n - Y2||u|?

linear constraints MGM

(alas, exponentially many!) _/‘

Conditional Gradient Backward pass
(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

® select a new corner of M

quadratic objective

oM
® update the (sparse) coefficients of p an S sparse
® Update rules: vanilla, away-step,
pairwise

® Quadratic objective: Active Set
(Nocedal and Wright, 1999, Ch. 16.4 & 16.5)
(Wolfe, 1976; Vinyes and Obozinski, 2017)

24

Algorithms for SparseMAP
P =argmaxp ' n - Y2||u|?

linear constraints MGM

(alas, exponentially many!) _/‘

Conditional Gradient
(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

® select a new corner of M
® update the (sparse) coefficients of p
® Update rules: vanilla, away-step,
pairwise
® Quadratic objective: Active Set
(Nocedal and Wright, 1999, Ch. 16.4 & 16.5)
(Wolfe, 1976; Vinyes and Obozinski, 2017)

quadratic objective

Backward pass

B_” .
an IS Sparse

computing (Z—Z)T dy

takes O(dim(p) nnz(p*))

24

Algorithms for SparseMAP
P =argmaxp ' n - Y2||u|?

linear constraints MGM

(alas, exponentially many!) _/‘

quadratic objective

UL Completely modular: just add MAP ek

(Frank and Wolfe, 1956
® select a new (B

— oM -
e update the (sparse) coefficients of p an 'S SParse
. T
e Update rules: vanilla, away-step, computing (a_ﬂ) dy
pairwise) on
® Quadratic objective: Active Set takes O(dim(p) nnz(p*))

(Nocedal and Wright, 1999, Ch. 16.4 & 16.5)
(Wolfe, 1976; Vinyes and Obozinski, 2017)

24

SparseMAP Applications

e Sparse alignment attention
(Niculae, Martins, Blondel, and Cardie, 2018)

e Latent TreeLSTM

(Niculae, Martins, and Cardie, 2018)
® As |oss: supervised dependency parsing

(Niculae, Martins, Blondel, and Cardie 2018;
Blondel, Martins, and Niculae 2019b)

)

ListOps (Nangia and Bowman, 2018)

Latent Dependency Trees

Arity tagging with latent GCN (Corro and Titov, 2019; Kipf and Welling, 2017)

(max 2 9 (min 4 7) 0])

26

ListOps (Nangia and Bowman, 2018)

Latent Dependency Trees

Arity tagging with latent GCN (Corro and Titov, 2019; Kipf and Welling, 2017)

A~

(max 2 9 (min 4 7) 0)
-

26

validation F1 score

RN

o
o

o
o

o
N

o
N

O 20 40 60 80 100
epoch

— Gold tree

— Left-to-right

27

validation F1 score

RN

o
o

o
o

o
N

o
N

f/

O 20 40 60 80 100
epoch

— Gold tree

— Latent tree
— Left-to-right

27

What if MAP is not
available?

Multiple, Overlapping Factors

e Ve

* dog on wheels

0O @ O
dog— O |
on— @ ()

wheels— O O

28

Multiple, Overlapping Factors

* dog on wheels

O @ O

dog— O |

on—| @ ()
wheels— () ()

TREE

Multiple, Overlapping Factors

{

dog#»

on#»

O @ O
O @

@ @

O O

wheels—[

TREE

BUDGET

BUDGET

BUDGET

BUDGET

28

Multiple, Overlapping Factors

Maximization in factor graphs: NP-hard, even when each factor is tractable.

*{ O @ O subceT
dog{' O @ ||BUDGET
on @ @ ||BUDGET
wheels{ O O BUDGET

TREE

Optimization as Consensus-Seeking

M 1O O O
Hue 1O O O
Mz 1O O O

fa

fo

29

Optimization as Consensus-Seeking

H1:3)
Ha.6]

H(7:9

fa

fo

O

O

O

O OO
O OO
O O|lO

Hq

Hy

29

Optimization as Consensus-Seeking

H1:3)
Ha.6]

H(7:9

.

max

i 2N Ky
feFr

fa

fo

s.t.

O

O

O

O OO
O OO
O O|lO

Hq

Hy

K€ M; forfeF

29

Optimization as Consensus-Seeking

Hi1:3)
H4.6]

H(7:9

Agreement on overlap:

fa

fo

O O
® O

O

® O
O O

[
[
O

Hq

Hy

Hog,(4:6) =Hp,[4:6] = K [4:6]

K€ M; forfeF

29

Optimization as Consensus-Seeking

Hi1:3)
H4.6]

H(7:9

Agreement on overlap:

fa

fo

O O
® O

O

® O
O O

[
[
O

Hq

Hy

Hog,(4:6) =Hp,[4:6] = K [4:6]
st. Cr =My, M€ Ms forfe s

29

LP relaxation (Wainwright and Jordan, 2008) ?ekl ng

the local polytope:

Hy

Agreement on overlap: M 14.6] = Hp,[4:6) = M [4:6]

max anTyf st. Cr =My, M€ Ms forfe s

29

(Niculae and Martins, 2020)

Optimization as Consensus-Seeking

Hi1:3)
H4.6]

H(7:9

Agreement on overlap:

fa

fo

O

O

O

O @|®
O @|®
O @|®

Hq

Hy

Hog,(4:6) =Hp,[4:6] = K [4:6]
st. Cr =My, M€ Ms forfe s

29

(Niculae and Martins, 2020)

Optimization as Consensus-Seeking

Hi1:3)
H4.6]

H(7:9

Agreement on overlap:

”r“f f€7:

fa

fo

O

O

O

O @|®
O @|®
O @|®

Hq

Hy

Hog,(4:6) =Hp,[4:6] = K [4:6]
max(anTyf) - 1/2||p||? st. Cip=py, pe € My forfe s

29

(Niculae and Martins, 2020)

Algorithms for LP-SparseMAP

Forward pass

argmax (>, nlpy) - 2llml?
CiHU=H¢ fcF

=arg maxz (nleJf— Y2||Dspgll?)
CrHu=H¢ fer

® Separable objective,
agreement constraints
ADMM in consensus form

® SparseMAP subproblem for each f

30

(Niculae and Martins, 2020)

Algorithms for LP-SparseMAP

Forward pass Backward pass
(Z .)) ® Jacobian fixed-point characterization
arg max n. M) - Y2|[pl| T
Cf M= f feF f gfa J‘fa C.) gfa
=arg maXZ(nfTMf‘l/leDfollz) J= .fb 2 g, .fb J
CrM=Mf feF : 0.--"-. g

e Efficient iteration for vijp
® Combines the SparseMAP Jacobians
of each factor

(use specialized impl. when available: many

® Separable objective,
agreement constraints
ADMM in consensus form

® SparseMAP subproblem for each f

commonly used factors derived in paper.) 30

(Niculae and Martins, 2020)

Differentiable Sparse Structured Prediction

©)
©)

BUDGET

[)
@) BUDGET
BUDGET

OO BUDGET

TREE

fg = FactorGraph()
var = [fg.variable() for i # j] # handwave

fg.add(Tree(var))

for i in range(n):
fg.add(Budget(var (i, :], budget=5)

Factor graphs as a hidden-layer DSL! - fq.1p_sparsemap(n)

31

(Niculae and Martins, 2020)

Differentiable Sparse Structured Prediction

©)
©)

BUDGET

[)
@) BUDGET
BUDGET

OO BUDGET

TREE

fg = FactorGraph()
var = [fg.variable() for i # j] # handwave

fg.add(Tree(var))

for i in range(n):
fg.add(Budget(var (i, :], budget=5)

Factor graphs as a hidden-layer DSL! - fq.1p_sparsemap(n)

If |7 | = 1, recovers SparseMAP.

31

(Niculae and Martins, 2020)

Differentiable Sparse Structured Prediction

BUDGET
BUDGET
BUDGET
BUDGET

..O

[]
[0@
@)

[eX JXe)
@ O
OO0 |

TREE

Factor graphs as a hidden-layer DSL!
If || =1, recovers SparseMAP.

Modular library.
Built-in specialized factors:
® OR, XOR, AND
® OR-with-output
® Budget, Knapsack
® Pairwise

class Factor:
def map(ns): # abstract, private
raise NotImplemented

def sparsemap(ne):
active set algo, uses self.map

def backward(dus) :
analytic, uses active set result

class Budget(Factor):
def sparsemap(ng):
specialized

def backward(dus) :
specialized

31

BUDGET
BUDGET
BUDGET
BUDGET

..O

[]
[0@
@)

[eX JXe)
@ O
OO0 |

TREE

Factor graphs as a hidden-layer DSL!
If || =1, recovers SparseMAP.

Modular library.
Built-in specialized factors:
® OR, XOR, AND
® OR-with-output
® Budget, Knapsack
® Pairwise

New factors only require MAP.

(Niculae and Martins, 2020)

Differentiable Sparse Structured Prediction

class Factor:
def map(ns): # abstract, private
raise NotImplemented

def sparsemap(ne):
active set algo, uses self.map

def backward(dus) :
analytic, uses active set result

class Budget(Factor):
def sparsemap(ng):
specialized

def backward(dus) :
specialized

class Tree(Factor):

def map(n):
Chu-Liu/Edmonds algo

31

validation F1 score

RN

o
o

o
o

o
N

o
N

f/

O 20 40 60 80 100
epoch

— Gold tree

— Latent tree
— Left-to-right

32

validation F1 score

0.8
0.6 | |

0.4

— Gold tree
— Latent w/ Budget(5)

— Latent tree
ﬁ// — Left-to-right

0.2

O 20 40 60 80 100

epoch

32

Structured Attention for Alignments

NLI

input
(P, H)

premise:
hypothesis: A police officer watches a situation closely.
A A
gentleman police
o) overlooking officer
situation closely

J

(Model: decomposable attention (Parikh et al., 2016))

A gentleman overlooking a neighborhood situation.

output

entails
contradicts

neutral

33

Structured Attention for Alignments

NN premise: A gentleman overlooking a neighborhood situation.
hypothesis: A police officer watches a situation closely.

input () output
A A

(P, H) gentleman \ police entails

officer Y contradicts

neutral

£+ | overlooking

situation closely

. J

(Model: decomposable attention (Parikh et al., 2016))
33

Structured Attention for Alignments

NLI

input
(P, H)

.

premise:
hypothesis: A police officer watches a situation closely.
A A
gentleman » police
o) overlooking - officer
situation closely

J

(Model: decomposable attention (Parikh et al., 2016))

A gentleman overlooking a neighborhood situation.

output

entails
contradicts

neutral

33

Structured Attention for Alignments

NN premise: A gentleman overlooking a neighborhood situation.
hypothesis: A police officer watches a situation closely.

input '] output
A——A
(P, H) gentleman police entails
£+ | overlooking >< officer Fo) contradicts
neutral
situation closely

(Proposed model: global structured alignment.)
33

Structured Alignment Models

matching
O @ O
O O @
® O O

SparseMAP w/ Kuhn-Munkres
(Kuhn, 1955)

34

Structured Alignment Models

matching LP-matching
O @ O O||®|]|O
O O @ OllO]||®
® O O @O0

SparseMAP w/ Kuhn-Munkres LP-SparseMAP w/ XORs
(Kuhn, 1955) (equivalent; different solver)

Structured Alignment Models

matching
O @ O
O O @
® O O

SparseMAP w/ Kuhn-Munkres
(Kuhn, 1955)

LP-matching

O||®|]|O
Ol110]||®
@O0

LP-SparseMAP w/ XORs
(equivalent; different solver)

LP-sequence

Of (@] [O
OmMOMm™®
@ (O] |O

additional score
for contiguous alignments
(i,j)=(i+1,j+1)

34

MultiNLI (williams et al., 2017)

72%

70%

68 % .

66% :
softmax matching LP-matching LP-sequence

35

a
gentleman
overlooking

a
neighborhood
situation

36

a
gentleman
overlooking

a
neighborhood
situation

37

A/A

a
police
gentleman gentleman
overlooking i officer
overlooking
a watches
a
neighborhood a
neighborhood

situation

/ situation

/‘ closely
’ \' .

situation

37

Conclusions :

gentleman
overlooking
(LRI ' a
oo neighborhood
o situation
(o] v@ 2 & L 2O
L& S
* o S S
o N o*@“ é\@ &
o
LO AF———1A
L coe) gentleman
overlooking ==
a =<
Differentiable & sparse neighborhood
situation =1 situation

structured inference

L= closely

Generic, extensible, efficient algorithms

for any factor graph O @ Olfsupcer

O @||supcer

Decomposition into meaningful ° ® |ovocer
coarse structures.

OO BUDGET

¥ v.niculaeauva.nl € github.com/deep-spin/lp-sparsemap

https://vene.ro ¥ avnfrombucharest TREE

mailto:v.niculae@uva.nl
https://github.com/deep-spin/lp-sparsemap
https://vene.ro
https://twitter.com/vnfrombucharest

Extra slides

Acknowledgements

This work was supported by the European Research Council (ERC StG DeepSPIN 758969) and by the
Fundacao para a Ciéncia e Tecnologia through contract UID/EEA/50008/2013.

Some icons by Dave Gandy and Freepik via flaticon.com.

39

https://www.flaticon.com/authors/dave-gandy
https://www.freepik.com/
https://www.flaticon.com/

Fusedmax

fusedmax(@) = argmaxp' O - 1/2||p||§ - Z lbj = pj-1
peA 2<j<d

=argmin|lp-OlI3+ > Ipj-pj-1l
peA 2<j<d

proxiysed (8) = argmin [[p - O112+ > |pj - pj-1]
peRrd 2<j<d

Proposition: fusedmax(0) = sparsemax(proxfused(e))

(Niculae and Blondel, 2017)

40

— |1 penalty

— tvld penalty

-Fused maX(- ;‘l-'AV!‘! | A=A ground truth |pj _ pj_ll
-1
ProXfysed (i-1 |

“Fused Lasso” a.k.a. 1-d Total Variation

Proposi

(Tibshirani et al., 2005)
(NICUlae dana pbilonael, £uli/)

40

(Danskin, 1966; Prop. B.25 in Bertsekas, 1999)

Danskin’s Theorem
Let ¢ : RY x Z — R, Z c R? compact.
amaxd(x,z) = conv{Vxp(x, z*) | z* € argmax p(x, z)}.
zeZ zeZ

Example: maximum of a vector

41

(Danskin, 1966; Prop. B.25 in Bertsekas, 1999)

Danskin’s Theorem

Let ¢ : RY x Z — R, Z c R? compact.
amaxd(x,z) = conv{Vxp(x, z*) | z* € argmax p(x, z)}.
ZGZ ZGZ

Example: maximum of a vector

dmax6;=3maxp' @
j€d] pEA

S Amaxe(p, 0)

=conv{Veo(p*, 0)}
=conv{p*}

41

(Danskin, 1966; Prop. B.25 in Bertsekas, 1999)

Danskin’s Theorem

Let ¢ : RY x Z — R, Z c R? compact.

amaxd(x,z) = conv{Vxp(x, z*) | z* € argmax p(x, z)}.
ZGZ ZGZ

Example: maximum of a vector

0=t O
dmax6;=3maxp' @
jeld] pEA . 1
=9 , 0
max$(p, 8) /
o -1 0 +1 -1 0 +1

max; 6; {31 | g€ 9omax;6;}

41

Discrete latent variables

So far: a structured hidden layer
Enlan]

Network must handle “soft” combinations of structures.
Fine for attention, but can be limiting.

42

(Correia, Niculae, Aziz, and Martins, 2020)

Latent variable models!

p(y [x)= > pe(y | h,x) pr(h|x)
heH

= Ep~py(hlx) Po(Y | D, X)

43

(Correia, Niculae, Aziz, and Martins, 2020)

Latent variable models!

p(y |X)= > pg(y | h.X) pm(h | X)

heH \/
= [Eh~pn(h|x) p¢(y | h, x sender

® Emergent communication: h is a word from a big vocabulary. pg(y | h) is expensive.

43

(Correia, Niculae, Aziz, and Martins, 2020)

Latent variable models!

sum over

all possible messages
mz pe(¥ | h, X) pre(h | x)
heH \/
= [Eh~pn(h|x) p¢(y | h, x sender

® Emergent communication: h is a word from a big vocabulary. pg(y | h) is expensive.

receiver

43

(Correia, Niculae, Aziz, and Martins, 2020)

Latent variable models!

sum over

all possible messages
mz pe(¥ | h, X) pre(h | x)
heH \/
= [Eh~pn(h|x) p¢(y | h, x sender

® Emergent communication: h is a word from a big vocabulary. pg(y | h) is expensive.

receiver

¢ Standard: Monte Carlo gradient estimators (e.g. SFE, Gumbel)

43

(Correia, Niculae, Aziz, and Martins, 2020)

Latent variable models!

sum over

all possible messages
mz pe(¥ | h, X) pre(h | x)
heH \/
[Eh~pn(h|x p¢(|h X sender

® Emergent communication: h is a word from a big vocabulary. pg(y | h) is expensive.

receiver

¢ Standard: Monte Carlo gradient estimators (e.g. SFE, Gumbel)

* Idea: parametrize p(h | x) using sparsemax! Sum only over |H| < |H]|.
No bias AND no variance by changing the question

43

(Lazaridou et al., 2017; Correia, Niculae, Aziz, et al., 2020)

Emergent Communication
® ... but make it harder: |[H| =256 ®

Method success (%) Dec. calls
Monte Carlo

SFE 33.05 2284 1
NVIL 37.04 z1.61 1
Gumbel 23.51 16,19 1
ST Gumbel 27.42 +13.36 1
Marginalization

44

(Lazaridou et al., 2017; Correia, Niculae, Aziz, et al., 2020)

Emergent Communication
® ... but make it harder: |[H| =256 ®

Method success (%) Dec. calls
Monte Carlo

SFE 33.05 284 1
NVIL 37.04 z1.61 1
Gumbel 23.51 16,19 1
ST Gumbel 27.42 +13.36 1
Marginalization

Gibbs 93.37 +0.42 256

44

(Lazaridou et al., 2017; Correia, Niculae, Aziz, et al., 2020)

Emergent Communication
® ... but make it harder: |[H| =256 ®

Method success (%) Dec. calls
Monte Carlo

SFE 33.05 284 1
NVIL 37.04 1161 1
Gumbel 23.51 16,19 1
ST Gumbel 27.42 +13.36 1
Marginalization

Gibbs 93.37 +0.42 256
Sparse 93.35 -o0.50 3.13z0.48

44

Emergent Communication

(Lazaridou et al., 2017; Correia, Niculae, Aziz, et al., 2020)

® ... but make it harder: |[H| =256 ®

Method success (%) Dec. calls
Monte Carlo

SFE 33.05 284 1
NVIL 37.04 1161 1
Gumbel 23.51 16,19 1
ST Gumbel 27.42 +13.36 1
Marginalization

Gibbs 93.37 +0.42 256
Sparse 93.35 -o0.50 3.13z0.48

N. decoder calls

256
— sparsemax
200 | ——SFE, etc
—— Gibbs
100
1 |
50 100
Epoch

44

Limitations

® Mostly (and eventually) very sparse.
But sparsemax(0) = ¥/d 1: fully dense worst case.

® For the same reason, sparsemax cannot handle structured h.

(Correia, Niculae, Aziz, and Martins, 2020)

45

(Correia, Niculae, Aziz, and Martins, 2020)

Limitations

® Mostly (and eventually) very sparse.
But sparsemax(0) = ¥/d 1: fully dense worst case.

® For the same reason, sparsemax cannot handle structured h.

One solution: top-k sparsemax

k-sparsemax(@)= argmin ||p - 0||§
PEA, |Ipllo<k

45

(Correia, Niculae, Aziz, and Martins, 2020)

Limitations

® Mostly (and eventually) very sparse.
But sparsemax(0) = ¥/d 1: fully dense worst case.

® For the same reason, sparsemax cannot handle structured h.

One solution: top-k sparsemax

k-sparsemax(@)= argmin ||p - 0||§
PEA, |Ipllo<k

® Non-convex but easy: sparsemax over the k highest scores (Kyrillidis et al., 2013).
® Top-k oracle available for some structured problems.

® Certificate: if at least one of the top-k h gets p(h) = O, k-sparsemax = sparsemax!
thus, for latent variables: biased early on, but it goes away.

45

Dependency TreelLSTM

G G G ¢G> &> &>
The bears eat the pretty ones

(Tai et al., 2015)

46

Dependency TreelLSTM

(Tai et al., 2015)

T

v\
G G G ¢G> &> &>
The bears eat the pretty ones

46

Dependency TreelLSTM

G G G ¢G> &> &>
The bears eat the pretty ones

(Tai et al., 2015)

46

Dependency TreeLSTM

The bears

eat

the

pretty ones

(Tai et al., 2015)

46

Dependency TreeLSTM

N

The bears

eat

the

pretty ones

(Tai et al., 2015)

46

Dependency TreeLSTM

The bears

eat

the

pretty ones

(Tai et al., 2015)

46

Dependency TreeLSTM

The bears

eat

by

the

pretty ones

(Tai et al., 2015)

46

Latent Dependency TreeLSTM

(Niculae, Martins, and Cardie, 2018)

input output

X T y

The bears eat the pretty ones

47

Latent Dependency TreeLSTM

(Niculae, Martins, and Cardie, 2018)

input output

X T y

The bears eat the pretty ones

heH

47

Structured Latent Variable Models

plylx)= > p (vIhx)p (h]x)
heH

48

Structured Latent Variable Models

p(y |X)= D pe(y | h x) pn(h | x)
heH

48

Structured Latent Variable Models

e.g., a TreeLSTM defined by h

p(y |X)= D pg(y | h x) pn(h | x)
heH

48

Structured Latent Variable Models

f e.g., a TreeLSTM defined by h

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier

48

Structured Latent Variable Models

sum over e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier

Exponentially large sum!

48

Structured Latent Variable Models

sum over e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier
How to define p?

idea 1
idea 2
idea 3

48

Structured Latent Variable Models

sum over e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier
How to define p?

2

heH
idea 1

idea 2
idea 3

48

Structured Latent Variable Models

sum over e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier

Z ap(y | x)

heH oTt

How to define p?

idea 1
idea 2
idea 3

48

Structured Latent Variable Models

sum over e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier

Z ap(y | x)

heH oTt

How to define p?

ideal pg(h|x)=1ifh=h*elseO argmax
idea 2
idea 3

48

Structured Latent Variable Models

sum over e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier

Z ap(y | x)
heH

How to define p?

om
ideal pg(h|x)=1ifh=h*elseO argmax
idea 2
idea 3

48

Structured Latent Variable Models

sum over e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier

Z ap(y | x)
heH

How to define p?

om
ideal pg(h|x)=1ifh=h*elseO argmax © d
idea 2
idea 3

48

Structured Latent Variable Models

sum over e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier

Z ap(y | x)
heH

How to define p?

oM
ideal pg(h|x)=1ifh=h*elseO argmax © d
idea2 pq(h|x) o exp(scorem(h;x)) softmax
idea 3

Structured Latent Variable Models

sum over e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier

Z ap(y | x)
heH

oM
ideal pg(h|x)=1ifh=h*elseO argmax © d
idea2 pq(h|x) o exp(scorem(h;x)) softmax S
idea 3

How to define p?

48

Structured Latent Variable Models

sum over e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier

Z ap(y | x)

hert 9T
ideal pg(h|x)=1ifh=h*elseO argmax © d

idea2 pq(h|x) o exp(scorem(h;x)) softmax Lo/ S
idea 3

How to define p?

48

Structured Latent Variable Models

sum over

e.g., a TreeLSTM defined by h
all possible trees /\ f

p(y |X)= D pe(y | h x) pr(h | x)
heH

latent classifier

5 ap(y | x)

he n

How to define p?

(s3]

ideal pg(h|x)=1ifh=h*elseO argmax d
idea2 pq(h|x) o exp(scorem(h;x)) softmax Lo/ S
idea 3 SparseMAP © ©

SparseMAP

49

SparseMAP

S +.3

TEN +0 + ..

49

SparseMAP

49

85%

84%

83%

82%

81%

80%

85% — -
84% — -
83% — -
82% — -
81% — -

80% T
LTR

v N ¥ N e ¥ N N\
* The bears eat the pretty ones

Left-to-right: regular LSTM

85%

84%

83%

82%

81%

80%

LTR

Flat

* The bears eat the pretty ones

Flat: bag-of-words-like

85%

84%

83%

82%

81%

80%

LTR

T
Flat

T
CoreNLP

SN A

* The bears eat the pretty ones

CoreNLP: off-line parser

85%

84%

83%

82%

81%

80%

LTR

T
Flat

T
CoreNLP

T
Latent

accuracy
(binary)

Sentiment classification (SST)

85%

84%

83%

82%

81%

80%

LTR

T
Flat

T
CoreNLP

T
Latent

accuracy
(binary)

Sentiment classification (SST)

85%

84%

83%

82%

81%

80%

T T
LTR Flat

p(y | P, H)=

T T
CoreNLP Latent

Sentence pair classification (P, H)

> pe(y | hp, i) pa(hp | P) pre(hy | H)

hpeH (P) hyeH (H)

Natural Language Inference (SNLI)

82%
accuracy
(3-class) LI
81.6%
81.4%
81.2%
81%
80.8%
80.6%

LTR

T
Flat

CoreNLP

T
Latent

accuracy
(binary)

Sentiment classification (SST)

85% — - 82%
accuracy

84% — = (3-class) LI
81.6%

83% - - 81.4%
R = B 81.2%
81%

81% — - 80.8%
80% T T T T 80.6%

LTR Flat CoreNLP Latent

Reverse dictionary lookup

given word description, predict word embedding (Hill et al., 2016)

Natural Language Inference (SNLI)

LTR

T
Flat

CoreNLP

T
Latent

Sentiment classification (SST)

85%
accuracy

(binary) 84%

83%
82%
81%

80%

accuracy@10 38%

36%

34%

32%

30%

T
CoreNLP

T
Latent

Natural Language Inference (SNLI)

82% -
accuracy
(3-class) LI

81.6% -
81.4% -
81.2% -

81% -
80.8% -
80.6% -

Reverse dictionary lookup

LTR Flat
(definitions)
L'I"R

Flat

T
Latent

accuracy@10 38%
36%
34%
32%

30%

T T T T
LTR Flat CoreNLP Latent

(concepts)

T T T
LTR Flat Latent

Sentiment classification (SST) Natural Language Inference (SNLI)

accuracy 858 - 82% - _
) accuracy B -

(binary) 84% - B (3-class) 81.8% -
. 81.6% - -
83% - — = 81.4% - - -
82% — — . . _ 81.2% - - _
BB 1o H N
81% - . 0oy 1 H B
.. H B e N

DR GlaciCoreNiLEgulatent LTR Flat CoreNLP Latent

Reverse dictionary lookup
(definitions) (concepts)
accuracy@10 38% - B accuracy@10 38% - -

36% — = 36% -

32% — - = 32% -
30% J T L 30% J T

LTR Flat Latent LTR Flat

,_
)
-
@
>
=

Syntax vs. Composition Order

CoreNLP parse, p=21.4%

— NN

* lovely and poignant

51

Syntax vs. Composition Order

p=22.6%

TN N

* lovely and poignant

CoreNLP parse, p=21.4%

— NN

* lovely and poignant

51

*

*

Syntax vs. Composition Order

p=15.33%

p=22.6% m

/\K\ * a deep and meaningful film

lovely and poignant p=15.27%

CoreNLP parse, p=21.4% /—/R m

m * a deep and meaningful film

lovely and poignant CoreNLP parse, p=0%

P

* a deep and meaningful film

52

Structured Output Prediction

SparseMAP La(n,) = mam{ n'u- 1/2||l.l||2}
HE
-nTp+ 2@

Instance of a structured Fenchel-Young loss, like CRF, SVM, etc. (Blondel, Martins, and Niculae, 2019b)

53

Structured Output Prediction

SparseMAP La(n, @) = mam{ n'u-Y2|p|?}
ue
-n'@ + 2|
cost-SparseMAP Lh(n, i) =”m€%{ n'p - 12|pll*+o(u,)}
-n'[+ 12|

Instance of a structured Fenchel-Young loss, like CRF, SVM, etc. (Blondel, Martins, and Niculae, 2019b)

53

90

85

80

75

70

65

60

Dependency Parsing
with bi-LSTM features

[Kiperwasser & Goldberg, 2016]

CRF Structured SVM SparseMAP margin
SparseMAP

H English ®Chinese B Vietnamese

CRF Structured SVM SparseMAP margin
SparseMAP

Unlabeled Accuracy (UAS) H English ®Chinese ™ Vietnamese

Universal Dependencies dataset

30000 4

25000 1

#sentences

10000 A

5000 A

Sparse Structured Output Prediction

As models train, inference gets sparser!

train: epoch 0

20000 4

15000 A

10

y f
20 30
#trees in active set

40

-—-_‘.I_L_L

50

#sentences

4000

3500

3000

N
w
o
=]

™~
(=]
=]
=]

1500 1
1000 4

500 4

valid: epoch 0

10 20 30 40 50
#trees in active set

Sparse Structured Output Prediction

Inference captures linguistic ambiguity!

T\ [——

* They did a vehicle wrap for my Toyota Venza that looks amazing .

68]

Sparse Structured Output Prediction

Inference captures linguistic ambiguity!

/l \¥ \\/ " J ; \

* the broccoli looks browned around the edges .

References |

Amos, Brandon and J. Zico Kolter (2017). “OptNet: Differentiable optimization as a layer in neural networks”. In: Proc. of
ICML.

Andre-Obrecht, Regine (1988). “A new statistical approach for the automatic segmentation of continuous speech signals”. In:
IEEE Transactions on Acoustics, Speech, and Signal Processing 36.1, pp. 29-40.

Bertsekas, Dimitri P (1999). Nonlinear Programming. Athena Scientific Belmont.

Blondel, Mathieu, André FT Martins, and Vlad Niculae (2019a). “Learning classifiers with Fenchel-Young losses: Generalized
entropies, margins, and algorithms”. In: Proc. of AISTATS.

— (2019b). “Learning with Fenchel-Young Losses”. In: preprint arXiv:1901.02324.
Brucker, Peter (1984). “An O(n) algorithm for quadratic knapsack problems”. In: Operations Research Letters 3.3, pp. 163-166.

Colson, Benoit, Patrice Marcotte, and Gilles Savard (2007). “An overview of bilevel optimization”. In: Annals of operations
research 153.1, pp. 235-256.

Condat, Laurent (2016). “Fast projection onto the simplex and the £4 ball”. In: Mathematical Programming 158.1-2,
pp. 575-585.

Correia, Gongalo M., Vlad Niculae, Wilker Aziz, et al. (2020). “Efficient marginalization of discrete and structured latent
variables via sparsity”. In: Proc. NeurlPS.

54

http://proceedings.mlr.press/v70/amos17a.html
http://www.athenasc.com/nonlinbook.html
https://arxiv.org/abs/1805.09717
https://arxiv.org/abs/1805.09717
https://arxiv.org/abs/1901.02324
https://www.sciencedirect.com/science/article/pii/0167637784900105
https://www.iro.umontreal.ca/~marcotte/ARTIPS/AOR2007.pdf
https://hal.archives-ouvertes.fr/hal-01056171
https://arxiv.org/abs/2007.01919
https://arxiv.org/abs/2007.01919

Referencesll

Correia, Gongalo M., Vlad Niculae, and André FT Martins (2019). “Adaptively Sparse Transformers”. In: Proc. EMNLP.
Corro, Caio and Ivan Titov (2019). “Learning latent trees with stochastic perturbations and differentiable dynamic
programming”. In: Proc. of ACL.

Danskin, John M (1966). “The theory of max-min, with applications”. In: SIAM Journal on Applied Mathematics 14.4,
pp. 641-664.

Dantzig, George B, Alex Orden, and Philip Wolfe (1955). “The generalized simplex method for minimizing a linear form under
linear inequality restraints”. In: Pacific Journal of Mathematics 5.2, pp. 183-195.

Frank, Marguerite and Philip Wolfe (1956). “An algorithm for quadratic programming”. In: Nav. Res. Log. 3.1-2, pp. 95-110.
Gould, Stephen et al. (2016). “On differentiating parameterized argmin and argmax problems with application to bi-level
optimization”. In: preprint arXiv:1607.05447.

Griinwald, Peter D and A Philip Dawid (2004). “Game theory, maximum entropy, minimum discrepancy and robust Bayesian
decision theory”. In: Annals of Statistics, pp. 1367-1433.

Held, Michael, Philip Wolfe, and Harlan P Crowder (1974). “Validation of subgradient optimization”. In: Mathematical
Programming 6.1, pp. 62-88.

55

https://arxiv.org/abs/1909.00015
https://arxiv.org/abs/1906.09992
https://arxiv.org/abs/1906.09992
https://epubs.siam.org/doi/abs/10.1137/0114053
https://msp.org/pjm/1955/5-2/pjm-v5-n2-s.pdf
https://msp.org/pjm/1955/5-2/pjm-v5-n2-s.pdf
https://doi.org/10.1002/nav.3800030109
https://arxiv.org/abs/1607.05447
https://arxiv.org/abs/1607.05447
https://arxiv.org/abs/math/0410076
https://arxiv.org/abs/math/0410076
https://link.springer.com/article/10.1007/BF01580223

References il

Hill, Felix et al. (2016). “Learning to understand phrases by embedding the dictionary”. In: TACL 4.1, pp. 17-30.

Kim, Yoon et al. (2017). “Structured attention networks”. In: Proc. of ICLR.

Kipf, Thomas, Elise van der Pol, and Max Welling (2020). “Contrastive Learning of Structured World Models”. In: Proc. of ICLR.
Kipf, Thomas and Max Welling (2017). “Semi-supervised classification with graph convolutional networks”. In: Proc. of ICLR.
Koo, Terry et al. (2007). “Structured prediction models via the matrix-tree theorem”. In: Proc. of EMNLP.

Kuhn, Harold W (1955). “The Hungarian method for the assignment problem”. In: Nav. Res. Log. 2.1-2, pp. 83-97.

Kyrillidis, Anastasios et al. (2013). “Sparse projections onto the simplex”. In: Proc. ICML.

Lacoste-Julien, Simon and Martin Jaggi (2015). “On the global linear convergence of Frank-Wolfe optimization variants”. In:
Proc. of NeurlPS.

Lazaridou, Angeliki, Alexander Peysakhovich, and Marco Baroni (2017). “Multi-agent cooperation and the emergence of
(natural) language”. In: Proc. ICLR.

Liu, Yang and Mirella Lapata (2018). “Learning structured text representations”. In: TACL 6, pp. 63-75.

56

https://arxiv.org/abs/1504.00548
https://arxiv.org/abs/1702.00887
https://arxiv.org/abs/1609.02907
http://www.aclweb.org/anthology/D07-1015
http://onlinelibrary.wiley.com/doi/10.1002/nav.3800020109/abstract
http://proceedings.mlr.press/v28/kyrillidis13.pdf
https://arxiv.org/abs/1511.05932
http://arxiv.org/abs/1612.07182
http://arxiv.org/abs/1612.07182
https://arxiv.org/abs/1705.09207

References IV

Long, Jonathan, Evan Shelhamer, and Trevor Darrell (2015). “Fully convolutional networks for semantic segmentation”. In:
Proc. of CVPR.

Martins, André FT and Ramon Fernandez Astudillo (2016). “From softmax to sparsemax: A sparse model of attention and
multi-label classification”. In: Proc. of ICML.

McDonald, Ryan T and Giorgio Satta (2007). “On the complexity of non-projective data-driven dependency parsing”. In: Proc.
of ICPT.

Mihaylova, Tsvetomila, Vlad Niculae, and André F. T. Martins (Nov. 2020). “Understanding the Mechanics of SPIGOT:
Surrogate Gradients for Latent Structure Learning”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Online: Association for Computational Linguistics.

Mohamed, Shakir et al. (2020). “Monte Carlo gradient estimation in machine learning”. In: Journal of Machine Learning
Research 21.132, pp. 1-62.

Nangia, Nikita and Samuel Bowman (2018). “ListOps: A diagnostic dataset for latent tree learning”. In: Proc. of NAACL SRW.

Niculae, Vlad and Mathieu Blondel (2017). “A regularized framework for sparse and structured neural attention”. In: Proc. of
NeurlPS.

57

https://arxiv.org/abs/1602.02068
https://arxiv.org/abs/1602.02068
https://dl.acm.org/citation.cfm?id=1621410.1621426
https://www.aclweb.org/anthology/2020.emnlp-main.171
https://www.aclweb.org/anthology/2020.emnlp-main.171
https://arxiv.org/abs/1906.10652
https://www.aclweb.org/anthology/N18-4013
https://arxiv.org/abs/1705.07704

References V

Niculae, Vlad and André FT Martins (2020). “LP-SparseMAP: Differentiable relaxed optimization for sparse structured
prediction”. In: Proc. of ICML.

Niculae, Vlad, André FT Martins, Mathieu Blondel, et al. (2018). “SparseMAP: Differentiable sparse structured inference”. In:
Proc. of ICML.

Niculae, Vlad, André FT Martins, and Claire Cardie (2018). “Towards dynamic computation graphs via sparse latent
structure”. In: Proc. of EMNLP.

Nocedal, Jorge and Stephen Wright (1999). Numerical Optimization. Springer New York.
Parikh, Ankur et al. (2016). “A decomposable attention model for natural language inference”. In: Proc. of EMNLP.
Peters, Ben, Vlad Niculae, and André FT Martins (2019). “Sparse sequence-to-sequence models”. In: Proc. ACL.

Rabiner, Lawrence R. (1989). “A tutorial on Hidden Markov Models and selected applications in speech recognition”. In: P.
IEEE 77.2, pp. 257-286.

Smith, David A and Noah A Smith (2007). “Probabilistic models of nonprojective dependency trees”. In: Proc. of EMNLP.

Tai, Kai Sheng, Richard Socher, and Christopher D Manning (2015). “Improved semantic representations from
tree-structured Long Short-Term Memory networks”. In: Proc. of ACL-IJCNLP.

58

https://arxiv.org/abs/2001.04437
https://arxiv.org/abs/2001.04437
https://arxiv.org/abs/1802.04223
https://arxiv.org/abs/1809.00653
https://arxiv.org/abs/1809.00653
https://doi.org/10.1007/b98874
https://arxiv.org/abs/1606.01933
https://arxiv.org/abs/1905.05702
https://doi.org/10.1109/5.18626
https://arxiv.org/abs/1503.00075
https://arxiv.org/abs/1503.00075

References Vi

Taskar, Ben (2004). “Learning structured prediction models: A large margin approach”. PhD thesis. Stanford University.
Tibshirani, Robert et al. (2005). “Sparsity and smoothness via the fused lasso”. In: Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 67.1, pp. 91-108.

Tsallis, Constantino (1988). “Possible generalization of Boltzmann-Gibbs statistics”. In: Journal of Statistical Physics 52,
pp. 479-487.

Valiant, Leslie G (1979). “The complexity of computing the permanent”. In: Theor. Comput. Sci. 8.2, pp. 189-201.

Vinyes, Marina and Guillaume Obozinski (2017). “ Fast column generation for atomic norm regularization”. In: Proc. of
AISTATS.

Wainwright, Martin J and Michael | Jordan (2008). Graphical models, exponential families, and variational inference. Vol. 1. 1-2.
Now Publishers, Inc., pp. 1-305.

Williams, Adina, Nikita Nangia, and Samuel R Bowman (2017). “A broad-coverage challenge corpus for sentence
understanding through inference”. In: preprint arXiv:1704.05426.

Wolfe, Philip (1976). “Finding the nearest point in a polytope”. In: Mathematical Programming 11.1, pp. 128-149.

59

https://homes.cs.washington.edu/~taskar/pubs/thesis.pdf
https://web.stanford.edu/group/SOL/papers/fused-lasso-JRSSB.pdf
https://link.springer.com/article/10.1007/BF01016429
https://doi.org/10.1016/0304-3975(79)90044-6
http://proceedings.mlr.press/v54/vinyes17a.html
https://people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
https://arxiv.org/abs/1704.05426
https://arxiv.org/abs/1704.05426
https://link.springer.com/article/10.1007/BF01580381

