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Syntactic Analysis

Syntax is an underlying structure of languages, often analyzed using parse trees.
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S

NP

PRP

They

VP

VBN

solved

NP

the problem

PP

with statistics

programming language (Python):

expr

expr

number

5

op

+

expr

expr

number

4

op

*

expr

number

2

3/∞



Binary Parsing
There are many kinds of complicated syntactic analysis formalisms. For simplicity,
we focus on: binary trees. Let’s start without labels too.
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A binary parse tree with no labelling is the same thing as a bracketing:

( (solve (the problem) ) (with statistics) ) ( (solve (the (problem (with statistics) ) ) ) )
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Bracketing: Representation

Assign a score aij to the span from i to j (fencepost).

The score of a parse tree is the sum of all scores of its (nested!) spans.
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solve the problem with statistics

score(y ) = a01 + a12 + a23 + a34 + a45 + a13 + a35 + a03 + a05
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Algorithm

Possible parses of the subsequence (0, 3):
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Possible parses of the subsequence (0, 4):

see the pattern?
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Dynamic Programming for Bracketing

In general: a partial parse that covers
subsequence (i , j) must consist of two partial
parses: one covering (i , k) and one covering
(k, j) for some i < k < j .

DefineMij as the maximum-scoring parse of
subtree from i to j . Then:

Mi ,i+1 = ai ,i+1

Mi ,j = max
i<k<j

ai ,j +Mi ,k +Mk,j

Fill in the table bottom-up:
dynamic programming.

CYK algorithm: Cocke, Younger, Kasami
independently discovered it in the 1960s.
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The CYK Algorithm
input: Scores ai ,j for 0 ≤ i < j ≤ n
Mi ,j = 0, πi ,j = −1, for 0 ≤ i < j ≤ n.
Mi ,i+1 = ai ,i+1 for 0 ≤ i < n.

Forward: compute max. scores for each span recursively
for s = 2 to n do

for i = 0 to n − s do
j = i + s
Mi ,j = maxi<k<j ai ,j +Mi ,k +Mk,j
πi ,j = argmaxi<k<j ai ,j +Mi ,k +Mk,j

Backward: follow backpointers
y⋆ = (), Q = {(0, n)}.
while Q not empty do

pop (i , j) from Q
y⋆ = y⋆ + (i , j)
k = πi ,j
push (i , k) and (k, j) to Q if k > 0.

output: The highest-scoring bracketing y⋆, and its total score f ⋆ = M0,n.
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The CYK Algorithm: Example

01 0

02 4

03 1

04 0

12 0

13 1

14 2

23 0

24 5

34 0

A =

01

02
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04
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13

14
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24

34

M =
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The Inside Algorithm for log Z

input: Scores ai ,j for 0 ≤ i < j ≤ n
Qi ,j = 0, for 0 ≤ i < j ≤ n.
Qi ,i+1 = ai ,i+1 for 0 ≤ i < n.

Forward: compute logsumexp for each span recursively
for s = 2 to n do

for i = 0 to n − s do
j = i + s
Qi ,j = log

∑
i<k<j exp ai ,j +Qi ,k +Qk,j

14/∞



CYK vs Segmentation

• The two algorithms have the same inputs: a table of scores for every possible
segment.

• The segmentation problem seeks the best low-level chunking.

• CYK seeks an entire tree of chunk “splits”.

• Segmentation is the simplest possible DAG. CYK cannot be represented as a
DAG at all!
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Protein Folding as Binary Parsing

Julia Hockenmaier, Aravind K. Joshi, Ken A. Dill,
Routes are trees: The parsing perspective on protein folding. Proteins, 66–1, 2007.
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Labelled Parsing

S

VP

NOUN
solve

NP

DET
the

NOUN
problem

PP

PREP
with

NOUN
statistics

• Simple case: replace all segments with labeled
segments (i , j, c).

• In this case, like for segmentation, we can pick the
best label for each segment before starting
Viterbi, and ignore the rest.

• We may want “transition scores”
e.g., prefer S out of NP VP, dislike S out of VP PP.

• related to probabilistic context-free grammars
• handled by a similar DP algorithm,
higher complexity
(loop also over all combinations of labels).
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Evaluation

ypred .

solve

.

the

.

problem

.

with statistics

Predicted spans:
(0, 1), (0, 5) (1, 2), (1, 5), (2, 3), (2, 5), (3, 4) (3, 5), (4, 5)

ytrue .

.

solve

.

the problem

.

with statistics

True spans:
(0, 1), (0, 3), (0, 5), (1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5)

P = n. correct
n. predicted R = n. correct

n. true F1 = 2PR
P+R

Note: in the unlabelled case, P=R, since the number of segments in a bracketing is always the same.

In the labelled case: usually common to compute per-label P/R/F, averaged over the entire dataset.

In linguistic applications, “real” parsing evaluation is more complicated, since trees are not binary.

20/∞



Evaluation

ypred .

solve

.

the

.

problem

.

with statistics

Predicted spans:
(0, 1), (0, 5) (1, 2), (1, 5), (2, 3), (2, 5), (3, 4) (3, 5), (4, 5)

ytrue .

.

solve

.

the problem

.

with statistics

True spans:
(0, 1), (0, 3), (0, 5), (1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5)

P = n. correct
n. predicted R = n. correct

n. true F1 = 2PR
P+R

Note: in the unlabelled case, P=R, since the number of segments in a bracketing is always the same.

In the labelled case: usually common to compute per-label P/R/F, averaged over the entire dataset.

In linguistic applications, “real” parsing evaluation is more complicated, since trees are not binary.

20/∞



Evaluation

ypred .

solve

.

the

.

problem

.

with statistics

Predicted spans:
(0, 1), (0, 5) (1, 2), (1, 5), (2, 3), (2, 5), (3, 4) (3, 5), (4, 5)

ytrue .

.

solve

.

the problem

.

with statistics

True spans:
(0, 1), (0, 3), (0, 5), (1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5)

P = n. correct
n. predicted R = n. correct

n. true F1 = 2PR
P+R

Note: in the unlabelled case, P=R, since the number of segments in a bracketing is always the same.

In the labelled case: usually common to compute per-label P/R/F, averaged over the entire dataset.

In linguistic applications, “real” parsing evaluation is more complicated, since trees are not binary.
20/∞



Hyperedges and Hypergraphs

There is a formalism that generalizes DAGs and can express the CYK
parsing problem, but its details are too complicated for our scope.
Nevertheless, here is a glimpse.

Given nodes V = {1, 2, . . . , n}

• instead of edges: (s, t) : s ∈ V , t ∈ V .
• define hyperedges:

(
(s1, . . . , sk ), t

)
: si ∈ V , t ∈ V .

Any directed graph can be represented as a directed hypergraph: if
(s, t) is an edge in G , then make ((s), t) a hyperedge in HG .

Generalizations of DAG and topological sort exist; and Viterbi &
Forward algorithms work.

Read more: Liang Huang, Advanced Dynamic Programming in Semiring
and Hypergraph Frameworks, COLING 2008 tutorial.

a

b

c

t
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Summary

• Binary parsing / bracketing can be solved with dynamic programming (even if it
can’t be represented as a DAG)

• Applications in computational linguistics:
related to grammars.

• Can generalize the algorithms seen to compute logsumexp and sampling
with DP, using a hypergraphs formalism.
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