
Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Parsing

Part 1: Definition and Representation

Lecture 14

https://vene.ro/mlsd

Parsing

1 Definition and Representation

2 Bracketing: Algorithm

3 Extensions and Evaluation

2/∞

Syntactic Analysis

Syntax is an underlying structure of languages, often analyzed using parse trees.

human language (English):

S

NP

PRP

They

VP

VBN

solved

NP

the problem

PP

with statistics

programming language (Python):

expr

expr

number

5

op

+

expr

expr

number

4

op

*

expr

number

2

3/∞

Binary Parsing
There are many kinds of complicated syntactic analysis formalisms. For simplicity,
we focus on: binary trees. Let’s start without labels too.

.

.

solve

.

the problem

.

with statistics

.

solve

.

the

.

problem

.

with statistics

A binary parse tree with no labelling is the same thing as a bracketing:

((solve (the problem)) (with statistics)) ((solve (the (problem (with statistics)))))

4/∞

Binary Parsing
There are many kinds of complicated syntactic analysis formalisms. For simplicity,
we focus on: binary trees. Let’s start without labels too.

.

.

solve

.

the problem

.

with statistics

.

solve

.

the

.

problem

.

with statistics

A binary parse tree with no labelling is the same thing as a bracketing:

((solve (the problem)) (with statistics)) ((solve (the (problem (with statistics)))))

4/∞

Bracketing: Representation

Assign a score aij to the span from i to j (fencepost).

The score of a parse tree is the sum of all scores of its (nested!) spans.

.

.

solve

.

the problem

.

with statistics

01

02

03

04

05

12

13

14

15

23

24

25

34

35

45

solve the problem with statistics

score(y) = a01 + a12 + a23 + a34 + a45 + a13 + a35 + a03 + a05

5/∞

Bracketing: Representation

Assign a score aij to the span from i to j (fencepost).

The score of a parse tree is the sum of all scores of its (nested!) spans.

.

solve

.

the

.

problem

.

with statistics

01

02

03

04

05

12

13

14

15

23

24

25

34

35

45

solve the problem with statistics

score(y) = a01 + a12 + a23 + a34 + a45 + a35 + a25 + a15 + a05

6/∞

Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Parsing

Part 2: Bracketing: Algorithm

Lecture 14

https://vene.ro/mlsd

Parsing

1 Definition and Representation

2 Bracketing: Algorithm

3 Extensions and Evaluation

8/∞

Algorithm

Possible parses of the subsequence (0, 3):

.

.

solve the problem
01

02

03

12

13

23

.

solve

.

the problem
01

02

03

12

13

23

9/∞

Possible parses of the subsequence (0, 4):

see the pattern?

.

.

solve the problem with

01

02

03

04

12

13

14

23

24

34

.

solve

.

the problem with

01

02

03

04

12

13

14

23

24

34

.

.

solve the

.

problem with

01

02

03

04

12

13

14

23

24

34

10/∞

Possible parses of the subsequence (0, 4):

see the pattern?

.

.

solve the problem with

01

02

03

04

12

13

14

23

24

34

.

solve

.

the problem with

01

02

03

04

12

13

14

23

24

34

.

.

solve the

.

problem with

01

02

03

04

12

13

14

23

24

34

10/∞

Possible parses of the subsequence (0, 4): see the pattern?

.

.

solve the problem with

01

02

03

04

12

13

14

23

24

34

.

solve

.

the problem with

01

02

03

04

12

13

14

23

24

34

.

.

solve the

.

problem with

01

02

03

04

12

13

14

23

24

34

10/∞

Dynamic Programming for Bracketing

In general: a partial parse that covers
subsequence (i , j) must consist of two partial
parses: one covering (i , k) and one covering
(k, j) for some i < k < j .

DefineMij as the maximum-scoring parse of
subtree from i to j . Then:

Mi ,i+1 = ai ,i+1

Mi ,j = max
i<k<j

ai ,j +Mi ,k +Mk,j

Fill in the table bottom-up:
dynamic programming.

CYK algorithm: Cocke, Younger, Kasami
independently discovered it in the 1960s.

01

02

03

04

12

13

14

23

24

34

01

02

03

04

12

13

14

23

24

34

01

02

03

04

12

13

14

23

24

34

11/∞

Dynamic Programming for Bracketing

In general: a partial parse that covers
subsequence (i , j) must consist of two partial
parses: one covering (i , k) and one covering
(k, j) for some i < k < j .

DefineMij as the maximum-scoring parse of
subtree from i to j . Then:

Mi ,i+1 = ai ,i+1

Mi ,j = max
i<k<j

ai ,j +Mi ,k +Mk,j

Fill in the table bottom-up:
dynamic programming.

CYK algorithm: Cocke, Younger, Kasami
independently discovered it in the 1960s.

01

02

03

04

12

13

14

23

24

34

01

02

03

04

12

13

14

23

24

34

01

02

03

04

12

13

14

23

24

34

11/∞

Dynamic Programming for Bracketing

In general: a partial parse that covers
subsequence (i , j) must consist of two partial
parses: one covering (i , k) and one covering
(k, j) for some i < k < j .

DefineMij as the maximum-scoring parse of
subtree from i to j . Then:

Mi ,i+1 = ai ,i+1

Mi ,j = max
i<k<j

ai ,j +Mi ,k +Mk,j

Fill in the table bottom-up:
dynamic programming.

CYK algorithm: Cocke, Younger, Kasami
independently discovered it in the 1960s.

01

02

03

04

12

13

14

23

24

34

01

02

03

04

12

13

14

23

24

34

01

02

03

04

12

13

14

23

24

34

11/∞

Dynamic Programming for Bracketing

In general: a partial parse that covers
subsequence (i , j) must consist of two partial
parses: one covering (i , k) and one covering
(k, j) for some i < k < j .

DefineMij as the maximum-scoring parse of
subtree from i to j . Then:

Mi ,i+1 = ai ,i+1

Mi ,j = max
i<k<j

ai ,j +Mi ,k +Mk,j

Fill in the table bottom-up:
dynamic programming.

CYK algorithm: Cocke, Younger, Kasami
independently discovered it in the 1960s.

01

02

03

04

12

13

14

23

24

34

01

02

03

04

12

13

14

23

24

34

01

02

03

04

12

13

14

23

24

34

11/∞

The CYK Algorithm
input: Scores ai ,j for 0 ≤ i < j ≤ n
Mi ,j = 0, πi ,j = −1, for 0 ≤ i < j ≤ n.
Mi ,i+1 = ai ,i+1 for 0 ≤ i < n.

Forward: compute max. scores for each span recursively
for s = 2 to n do

for i = 0 to n − s do
j = i + s
Mi ,j = maxi<k<j ai ,j +Mi ,k +Mk,j
πi ,j = argmaxi<k<j ai ,j +Mi ,k +Mk,j

Backward: follow backpointers
y⋆ = (), Q = {(0, n)}.
while Q not empty do

pop (i , j) from Q
y⋆ = y⋆ + (i , j)
k = πi ,j
push (i , k) and (k, j) to Q if k > 0.

output: The highest-scoring bracketing y⋆, and its total score f ⋆ = M0,n.
12/∞

The CYK Algorithm: Example

01 0

02 4

03 1

04 0

12 0

13 1

14 2

23 0

24 5

34 0

A =

01

02

03

04

12

13

14

23

24

34

M =

13/∞

The Inside Algorithm for log Z

input: Scores ai ,j for 0 ≤ i < j ≤ n
Qi ,j = 0, for 0 ≤ i < j ≤ n.
Qi ,i+1 = ai ,i+1 for 0 ≤ i < n.

Forward: compute logsumexp for each span recursively
for s = 2 to n do

for i = 0 to n − s do
j = i + s
Qi ,j = log

∑
i<k<j exp ai ,j +Qi ,k +Qk,j

14/∞

CYK vs Segmentation

• The two algorithms have the same inputs: a table of scores for every possible
segment.

• The segmentation problem seeks the best low-level chunking.

• CYK seeks an entire tree of chunk “splits”.

• Segmentation is the simplest possible DAG. CYK cannot be represented as a
DAG at all!

15/∞

Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Parsing

Part 3: Extensions and Evaluation

Lecture 14

https://vene.ro/mlsd

Parsing

1 Definition and Representation

2 Bracketing: Algorithm

3 Extensions and Evaluation

17/∞

Protein Folding as Binary Parsing

Julia Hockenmaier, Aravind K. Joshi, Ken A. Dill,
Routes are trees: The parsing perspective on protein folding. Proteins, 66–1, 2007.

18/∞

https://onlinelibrary.wiley.com/doi/10.1002/prot.21195

Labelled Parsing

S

VP

NOUN
solve

NP

DET
the

NOUN
problem

PP

PREP
with

NOUN
statistics

• Simple case: replace all segments with labeled
segments (i , j, c).

• In this case, like for segmentation, we can pick the
best label for each segment before starting
Viterbi, and ignore the rest.

• We may want “transition scores”
e.g., prefer S out of NP VP, dislike S out of VP PP.

• related to probabilistic context-free grammars
• handled by a similar DP algorithm,
higher complexity
(loop also over all combinations of labels).

19/∞

Labelled Parsing

S

VP

NOUN
solve

NP

DET
the

NOUN
problem

PP

PREP
with

NOUN
statistics

• Simple case: replace all segments with labeled
segments (i , j, c).

• In this case, like for segmentation, we can pick the
best label for each segment before starting
Viterbi, and ignore the rest.

• We may want “transition scores”
e.g., prefer S out of NP VP, dislike S out of VP PP.

• related to probabilistic context-free grammars
• handled by a similar DP algorithm,
higher complexity
(loop also over all combinations of labels).

19/∞

Labelled Parsing

S

VP

NOUN
solve

NP

DET
the

NOUN
problem

PP

PREP
with

NOUN
statistics

• Simple case: replace all segments with labeled
segments (i , j, c).

• In this case, like for segmentation, we can pick the
best label for each segment before starting
Viterbi, and ignore the rest.

• We may want “transition scores”
e.g., prefer S out of NP VP, dislike S out of VP PP.

• related to probabilistic context-free grammars
• handled by a similar DP algorithm,
higher complexity
(loop also over all combinations of labels).

19/∞

Evaluation

ypred .

solve

.

the

.

problem

.

with statistics

Predicted spans:
(0, 1), (0, 5) (1, 2), (1, 5), (2, 3), (2, 5), (3, 4) (3, 5), (4, 5)

ytrue .

.

solve

.

the problem

.

with statistics

True spans:
(0, 1), (0, 3), (0, 5), (1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5)

P = n. correct
n. predicted R = n. correct

n. true F1 = 2PR
P+R

Note: in the unlabelled case, P=R, since the number of segments in a bracketing is always the same.

In the labelled case: usually common to compute per-label P/R/F, averaged over the entire dataset.

In linguistic applications, “real” parsing evaluation is more complicated, since trees are not binary.

20/∞

Evaluation

ypred .

solve

.

the

.

problem

.

with statistics

Predicted spans:
(0, 1), (0, 5) (1, 2), (1, 5), (2, 3), (2, 5), (3, 4) (3, 5), (4, 5)

ytrue .

.

solve

.

the problem

.

with statistics

True spans:
(0, 1), (0, 3), (0, 5), (1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5)

P = n. correct
n. predicted R = n. correct

n. true F1 = 2PR
P+R

Note: in the unlabelled case, P=R, since the number of segments in a bracketing is always the same.

In the labelled case: usually common to compute per-label P/R/F, averaged over the entire dataset.

In linguistic applications, “real” parsing evaluation is more complicated, since trees are not binary.

20/∞

Evaluation

ypred .

solve

.

the

.

problem

.

with statistics

Predicted spans:
(0, 1), (0, 5) (1, 2), (1, 5), (2, 3), (2, 5), (3, 4) (3, 5), (4, 5)

ytrue .

.

solve

.

the problem

.

with statistics

True spans:
(0, 1), (0, 3), (0, 5), (1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5)

P = n. correct
n. predicted R = n. correct

n. true F1 = 2PR
P+R

Note: in the unlabelled case, P=R, since the number of segments in a bracketing is always the same.

In the labelled case: usually common to compute per-label P/R/F, averaged over the entire dataset.

In linguistic applications, “real” parsing evaluation is more complicated, since trees are not binary.
20/∞

Hyperedges and Hypergraphs

There is a formalism that generalizes DAGs and can express the CYK
parsing problem, but its details are too complicated for our scope.
Nevertheless, here is a glimpse.

Given nodes V = {1, 2, . . . , n}

• instead of edges: (s, t) : s ∈ V , t ∈ V .
• define hyperedges:

(
(s1, . . . , sk), t

)
: si ∈ V , t ∈ V .

Any directed graph can be represented as a directed hypergraph: if
(s, t) is an edge in G , then make ((s), t) a hyperedge in HG .

Generalizations of DAG and topological sort exist; and Viterbi &
Forward algorithms work.

Read more: Liang Huang, Advanced Dynamic Programming in Semiring
and Hypergraph Frameworks, COLING 2008 tutorial.

a

b

c

t

21/∞

https://aclanthology.org/C08-5001
https://aclanthology.org/C08-5001

Hyperedges and Hypergraphs

There is a formalism that generalizes DAGs and can express the CYK
parsing problem, but its details are too complicated for our scope.
Nevertheless, here is a glimpse.

Given nodes V = {1, 2, . . . , n}

• instead of edges: (s, t) : s ∈ V , t ∈ V .
• define hyperedges:

(
(s1, . . . , sk), t

)
: si ∈ V , t ∈ V .

Any directed graph can be represented as a directed hypergraph: if
(s, t) is an edge in G , then make ((s), t) a hyperedge in HG .

Generalizations of DAG and topological sort exist; and Viterbi &
Forward algorithms work.

Read more: Liang Huang, Advanced Dynamic Programming in Semiring
and Hypergraph Frameworks, COLING 2008 tutorial.

a

b

c

t

21/∞

https://aclanthology.org/C08-5001
https://aclanthology.org/C08-5001

Summary

• Binary parsing / bracketing can be solved with dynamic programming (even if it
can’t be represented as a DAG)

• Applications in computational linguistics:
related to grammars.

• Can generalize the algorithms seen to compute logsumexp and sampling
with DP, using a hypergraphs formalism.

22/∞

	Definition and Representation
	Bracketing: Algorithm
	Extensions and Evaluation

