
Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Sampling and Intractable Models

Part 1: Sampling From Structured Probabilistic Models

Lecture 13

https://vene.ro/mlsd

Sampling and Intractable Models

1 Sampling From Structured Probabilistic Models

2 Learning Via Sampling

3 Intractable Structured Models

2/∞

How can we use a structured model?

We’ve been working with the probabilistic model over structures:

Pr(y | x) = exp (score(y))
Z

.

We’ve studied

• finding the best structure

• computing logZ (for learning and assessing probabilities)

Today’s focus: sampling from Pr(y | x).

3/∞

Why sample from a structured model?

• Explore ambiguity / uncertainty
• is one configuration way better than the rest? or
are there several good configurations that differ
by a little?

• Increase output diversity, can be more robust to
errors.

• maybe our model’s top-1 is wrong, but the right
structure is among the top-3.

• Do advanced statistical analysis on the model
• e.g., estimate entropy ÅY [− log Pr(Y |x)]

• Enable learning in intractable cases (more today).

• Model structured latent variables and other
advanced topics.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

4/∞

Why sample from a structured model?

• Explore ambiguity / uncertainty
• is one configuration way better than the rest? or
are there several good configurations that differ
by a little?

• Increase output diversity, can be more robust to
errors.

• maybe our model’s top-1 is wrong, but the right
structure is among the top-3.

• Do advanced statistical analysis on the model
• e.g., estimate entropy ÅY [− log Pr(Y |x)]

• Enable learning in intractable cases (more today).

• Model structured latent variables and other
advanced topics.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

4/∞

Why sample from a structured model?

• Explore ambiguity / uncertainty
• is one configuration way better than the rest? or
are there several good configurations that differ
by a little?

• Increase output diversity, can be more robust to
errors.

• maybe our model’s top-1 is wrong, but the right
structure is among the top-3.

• Do advanced statistical analysis on the model
• e.g., estimate entropy ÅY [− log Pr(Y |x)]

• Enable learning in intractable cases (more today).

• Model structured latent variables and other
advanced topics.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

4/∞

Why sample from a structured model?

• Explore ambiguity / uncertainty
• is one configuration way better than the rest? or
are there several good configurations that differ
by a little?

• Increase output diversity, can be more robust to
errors.

• maybe our model’s top-1 is wrong, but the right
structure is among the top-3.

• Do advanced statistical analysis on the model
• e.g., estimate entropy ÅY [− log Pr(Y |x)]

• Enable learning in intractable cases (more today).

• Model structured latent variables and other
advanced topics.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

4/∞

Why sample from a structured model?

• Explore ambiguity / uncertainty
• is one configuration way better than the rest? or
are there several good configurations that differ
by a little?

• Increase output diversity, can be more robust to
errors.

• maybe our model’s top-1 is wrong, but the right
structure is among the top-3.

• Do advanced statistical analysis on the model
• e.g., estimate entropy ÅY [− log Pr(Y |x)]

• Enable learning in intractable cases (more today).

• Model structured latent variables and other
advanced topics.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

4/∞

Why sample from a structured model?

• Explore ambiguity / uncertainty
• is one configuration way better than the rest? or
are there several good configurations that differ
by a little?

• Increase output diversity, can be more robust to
errors.

• maybe our model’s top-1 is wrong, but the right
structure is among the top-3.

• Do advanced statistical analysis on the model
• e.g., estimate entropy ÅY [− log Pr(Y |x)]

• Enable learning in intractable cases (more today).

• Model structured latent variables and other
advanced topics.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

4/∞

Dynamic Programming and Sampling

For structures that are tractable via DP, we also have an efficient sampling
algorithm.

FFBS algorithm, discussed in the Dynamic Programming lecture.

For argmax, we backtrack through the table following the
backpointer (the best among the possible arrows into that cell.)

To sample, follow random backpointers.

1 2 3 4

1

2

3

4

0

5/∞

Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Sampling and Intractable Models

Part 2: Learning Via Sampling

Lecture 13

https://vene.ro/mlsd

Sampling and Intractable Models

1 Sampling From Structured Probabilistic Models

2 Learning Via Sampling

3 Intractable Structured Models

7/∞

Learning Via Sampling
There are some useful models for which we cannot compute argmax or logsumexp,
but we can approximately draw samples of P (y |x).
We can still (noisily) train such models using Monte Carlo gradient estimation.

Recall our probabilistic objective:

LNLL (y) = − score(y) + log
∑

y ′∈Y
exp score(y ′).

Its gradient:

+θLNLL (y) = −+θ score(y) + +θ log
∑

y ′∈Y
exp score(y ′)︸ ︷︷ ︸

GNLL

.

We normally leave it to pytorch. Let’s look closer.

GNLL = +θ log
∑

y ′∈Y
exp

(
score(y ′)

)
︸ ︷︷ ︸

Z

=
1
Z

∑
y ′∈Y

+θ exp
(
score(y ′)

)
=

1
Z

∑
y ′∈Y

exp
(
score(y ′)

)
+θ score(y ′)

= ÅPr(Y |x) [+θ score(Y)]

≈ +θ
1
S

S∑
i=1

score(ỹ (i)) for samples ỹ (1) , . . . ỹ (S) .

8/∞

Learning Via Sampling
There are some useful models for which we cannot compute argmax or logsumexp,
but we can approximately draw samples of P (y |x).
We can still (noisily) train such models using Monte Carlo gradient estimation.

Recall our probabilistic objective:

LNLL (y) = − score(y) + log
∑

y ′∈Y
exp score(y ′).

Its gradient:

+θLNLL (y) = −+θ score(y) + +θ log
∑

y ′∈Y
exp score(y ′)︸ ︷︷ ︸

GNLL

.

We normally leave it to pytorch. Let’s look closer.

GNLL = +θ log
∑

y ′∈Y
exp

(
score(y ′)

)
︸ ︷︷ ︸

Z

=
1
Z

∑
y ′∈Y

+θ exp
(
score(y ′)

)
=

1
Z

∑
y ′∈Y

exp
(
score(y ′)

)
+θ score(y ′)

= ÅPr(Y |x) [+θ score(Y)]

≈ +θ
1
S

S∑
i=1

score(ỹ (i)) for samples ỹ (1) , . . . ỹ (S) .

8/∞

Learning Via Sampling
There are some useful models for which we cannot compute argmax or logsumexp,
but we can approximately draw samples of P (y |x).
We can still (noisily) train such models using Monte Carlo gradient estimation.

Recall our probabilistic objective:

LNLL (y) = − score(y) + log
∑

y ′∈Y
exp score(y ′).

Its gradient:

+θLNLL (y) = −+θ score(y) + +θ log
∑

y ′∈Y
exp score(y ′)︸ ︷︷ ︸

GNLL

.

We normally leave it to pytorch. Let’s look closer.

GNLL = +θ log
∑

y ′∈Y
exp

(
score(y ′)

)
︸ ︷︷ ︸

Z

=
1
Z

∑
y ′∈Y

+θ exp
(
score(y ′)

)
=

1
Z

∑
y ′∈Y

exp
(
score(y ′)

)
+θ score(y ′)

= ÅPr(Y |x) [+θ score(Y)]

≈ +θ
1
S

S∑
i=1

score(ỹ (i)) for samples ỹ (1) , . . . ỹ (S) .

8/∞

Learning Via Sampling
There are some useful models for which we cannot compute argmax or logsumexp,
but we can approximately draw samples of P (y |x).
We can still (noisily) train such models using Monte Carlo gradient estimation.

Recall our probabilistic objective:

LNLL (y) = − score(y) + log
∑

y ′∈Y
exp score(y ′).

Its gradient:

+θLNLL (y) = −+θ score(y) + +θ log
∑

y ′∈Y
exp score(y ′)︸ ︷︷ ︸

GNLL

.

We normally leave it to pytorch. Let’s look closer.

GNLL = +θ log
∑

y ′∈Y
exp

(
score(y ′)

)
︸ ︷︷ ︸

Z

=
1
Z

∑
y ′∈Y

+θ exp
(
score(y ′)

)

=
1
Z

∑
y ′∈Y

exp
(
score(y ′)

)
+θ score(y ′)

= ÅPr(Y |x) [+θ score(Y)]

≈ +θ
1
S

S∑
i=1

score(ỹ (i)) for samples ỹ (1) , . . . ỹ (S) .

8/∞

Learning Via Sampling
There are some useful models for which we cannot compute argmax or logsumexp,
but we can approximately draw samples of P (y |x).
We can still (noisily) train such models using Monte Carlo gradient estimation.

Recall our probabilistic objective:

LNLL (y) = − score(y) + log
∑

y ′∈Y
exp score(y ′).

Its gradient:

+θLNLL (y) = −+θ score(y) + +θ log
∑

y ′∈Y
exp score(y ′)︸ ︷︷ ︸

GNLL

.

We normally leave it to pytorch. Let’s look closer.

GNLL = +θ log
∑

y ′∈Y
exp

(
score(y ′)

)
︸ ︷︷ ︸

Z

=
1
Z

∑
y ′∈Y

+θ exp
(
score(y ′)

)
=

1
Z

∑
y ′∈Y

exp
(
score(y ′)

)
+θ score(y ′)

= ÅPr(Y |x) [+θ score(Y)]

≈ +θ
1
S

S∑
i=1

score(ỹ (i)) for samples ỹ (1) , . . . ỹ (S) .

8/∞

Learning Via Sampling
There are some useful models for which we cannot compute argmax or logsumexp,
but we can approximately draw samples of P (y |x).
We can still (noisily) train such models using Monte Carlo gradient estimation.

Recall our probabilistic objective:

LNLL (y) = − score(y) + log
∑

y ′∈Y
exp score(y ′).

Its gradient:

+θLNLL (y) = −+θ score(y) + +θ log
∑

y ′∈Y
exp score(y ′)︸ ︷︷ ︸

GNLL

.

We normally leave it to pytorch. Let’s look closer.

GNLL = +θ log
∑

y ′∈Y
exp

(
score(y ′)

)
︸ ︷︷ ︸

Z

=
1
Z

∑
y ′∈Y

+θ exp
(
score(y ′)

)
=

1
Z

∑
y ′∈Y

exp
(
score(y ′)

)
+θ score(y ′)

= ÅPr(Y |x) [+θ score(Y)]

≈ +θ
1
S

S∑
i=1

score(ỹ (i)) for samples ỹ (1) , . . . ỹ (S) .

8/∞

Learning Via Sampling
There are some useful models for which we cannot compute argmax or logsumexp,
but we can approximately draw samples of P (y |x).
We can still (noisily) train such models using Monte Carlo gradient estimation.

Recall our probabilistic objective:

LNLL (y) = − score(y) + log
∑

y ′∈Y
exp score(y ′).

Its gradient:

+θLNLL (y) = −+θ score(y) + +θ log
∑

y ′∈Y
exp score(y ′)︸ ︷︷ ︸

GNLL

.

We normally leave it to pytorch. Let’s look closer.

GNLL = +θ log
∑

y ′∈Y
exp

(
score(y ′)

)
︸ ︷︷ ︸

Z

=
1
Z

∑
y ′∈Y

+θ exp
(
score(y ′)

)
=

1
Z

∑
y ′∈Y

exp
(
score(y ′)

)
+θ score(y ′)

= ÅPr(Y |x) [+θ score(Y)]

≈ +θ
1
S

S∑
i=1

score(ỹ (i)) for samples ỹ (1) , . . . ỹ (S) .

8/∞

Learning Via Sampling: Surrogate Loss

True probabilistic objective:

LNLL (y) = − score(y) + log
∑

y ′∈Y
exp score(y ′).

Surrogate objective: sample ỹ (1) , . . . , ỹ (S) from
Pr(Y |x), and compute

L̃NLL (y) = − score(y) + 1
S

S∑
i=1

score(ỹ (i)).

In the limit,

lim
S→∞

+θ L̃NLL (y) = +θLNLL (y).

Give pytorch L̃NLL and it will compute a consistent
estimate of the gradient.

0 2 4 6 8 10
epoch

0.815

0.820

0.825

0.830

0.835

0.840

0.845

Tr
ai

n
F1

 sc
or

e

exact
1 sample

This is an approximation: when available,
exact logsumexp should be better.

Using multiple samples helps, but also
increases cost.

9/∞

Learning Via Sampling: Surrogate Loss

True probabilistic objective:

LNLL (y) = − score(y) + log
∑

y ′∈Y
exp score(y ′).

Surrogate objective: sample ỹ (1) , . . . , ỹ (S) from
Pr(Y |x), and compute

L̃NLL (y) = − score(y) + 1
S

S∑
i=1

score(ỹ (i)).

In the limit,

lim
S→∞

+θ L̃NLL (y) = +θLNLL (y).

Give pytorch L̃NLL and it will compute a consistent
estimate of the gradient.

0 2 4 6 8 10
epoch

0.815

0.820

0.825

0.830

0.835

0.840

0.845

Tr
ai

n
F1

 sc
or

e

exact
1 sample

This is an approximation: when available,
exact logsumexp should be better.

Using multiple samples helps, but also
increases cost.

9/∞

Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Sampling and Intractable Models

Part 3: Intractable Structured Models

Lecture 13

https://vene.ro/mlsd

Sampling and Intractable Models

1 Sampling From Structured Probabilistic Models

2 Learning Via Sampling

3 Intractable Structured Models

11/∞

The Potts Model for Grid Tagging

The Potts model is the grid analogy of our
sequence tagging model.

We’ve seen it before for semantic image
segmentation.

Originally from physics (neighboring particles
influence each other).

Configurations y are matrices with
yij ∈ {1, . . . ,K }.

How many possible labelings?

Denoting V = {(0, 0), (0, 1), . . . , (n,m)} and E
the set of edges,

score(y) =
∑

(i ,j) ∈V
aijyij︸ ︷︷ ︸

unary

+
∑

((i ,j),(i ′,j ′)) ∈E
tyij ,yi′ j′︸ ︷︷ ︸

pairwise

An algorithm is available only for K = 2 (a.k.a.,
Ising model) and only when the pairwise score
t ≥ 0 (“ferromagnetic”).

What to do in general?

12/∞

The Potts Model for Grid Tagging

The Potts model is the grid analogy of our
sequence tagging model.

We’ve seen it before for semantic image
segmentation.

Originally from physics (neighboring particles
influence each other).

Configurations y are matrices with
yij ∈ {1, . . . ,K }.

How many possible labelings?

Denoting V = {(0, 0), (0, 1), . . . , (n,m)} and E
the set of edges,

score(y) =
∑

(i ,j) ∈V
aijyij︸ ︷︷ ︸

unary

+
∑

((i ,j),(i ′,j ′)) ∈E
tyij ,yi′ j′︸ ︷︷ ︸

pairwise

An algorithm is available only for K = 2 (a.k.a.,
Ising model) and only when the pairwise score
t ≥ 0 (“ferromagnetic”).

What to do in general?

12/∞

The Potts Model for Grid Tagging

The Potts model is the grid analogy of our
sequence tagging model.

We’ve seen it before for semantic image
segmentation.

Originally from physics (neighboring particles
influence each other).

Configurations y are matrices with
yij ∈ {1, . . . ,K }.

How many possible labelings?

Denoting V = {(0, 0), (0, 1), . . . , (n,m)} and E
the set of edges,

score(y) =
∑

(i ,j) ∈V
aijyij︸ ︷︷ ︸

unary

+
∑

((i ,j),(i ′,j ′)) ∈E
tyij ,yi′ j′︸ ︷︷ ︸

pairwise

An algorithm is available only for K = 2 (a.k.a.,
Ising model) and only when the pairwise score
t ≥ 0 (“ferromagnetic”).

What to do in general?

12/∞

The Potts Model for Grid Tagging

The Potts model is the grid analogy of our
sequence tagging model.

We’ve seen it before for semantic image
segmentation.

Originally from physics (neighboring particles
influence each other).

Configurations y are matrices with
yij ∈ {1, . . . ,K }.

How many possible labelings?

Denoting V = {(0, 0), (0, 1), . . . , (n,m)} and E
the set of edges,

score(y) =
∑

(i ,j) ∈V
aijyij︸ ︷︷ ︸

unary

+
∑

((i ,j),(i ′,j ′)) ∈E
tyij ,yi′ j′︸ ︷︷ ︸

pairwise

An algorithm is available only for K = 2 (a.k.a.,
Ising model) and only when the pairwise score
t ≥ 0 (“ferromagnetic”).

What to do in general?

12/∞

Gibbs sampling

Initialize y .

Repeat:
pick a variable yv : v ∈ V
sample yv given y¬v (all other variables)

After enough repetitions, converges to a sample from P (y).
(i.e., configurations with high score are more likely than
ones with low score).

In general:

Pr(yv = c | y¬v) =
exp score(y1, . . . , yv−1, c, yv+1, . . .)∑

c ′∈[K] exp score(y1, . . . , yv−1, c ′, yv+1, . . .)

For Potts model, only the 4 neighbors matter: very fast.

P (yij = c | y¬ij) ∝ exp
(
aijc + tyi−1,j ,c + tyi ,j−1,c + tyi+1,j ,c + tyi ,j+1,c

)

13/∞

Gibbs sampling

Initialize y .

Repeat:
pick a variable yv : v ∈ V
sample yv given y¬v (all other variables)

After enough repetitions, converges to a sample from P (y).
(i.e., configurations with high score are more likely than
ones with low score).

In general:

Pr(yv = c | y¬v) =
exp score(y1, . . . , yv−1, c, yv+1, . . .)∑

c ′∈[K] exp score(y1, . . . , yv−1, c ′, yv+1, . . .)

For Potts model, only the 4 neighbors matter: very fast.

P (yij = c | y¬ij) ∝ exp
(
aijc + tyi−1,j ,c + tyi ,j−1,c + tyi+1,j ,c + tyi ,j+1,c

)

13/∞

Gibbs sampling

Initialize y .

Repeat:
pick a variable yv : v ∈ V
sample yv given y¬v (all other variables)

After enough repetitions, converges to a sample from P (y).
(i.e., configurations with high score are more likely than
ones with low score).

In general:

Pr(yv = c | y¬v) =
exp score(y1, . . . , yv−1, c, yv+1, . . .)∑

c ′∈[K] exp score(y1, . . . , yv−1, c ′, yv+1, . . .)

For Potts model, only the 4 neighbors matter: very fast.

P (yij = c | y¬ij) ∝ exp
(
aijc + tyi−1,j ,c + tyi ,j−1,c + tyi+1,j ,c + tyi ,j+1,c

)
13/∞

Sequence Tagging with Global Scores
In sequence tagging, the efficient DP algorithm was possible thanks to the “chain”
structure of the score

score(y) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj .

In some cases you might want score terms that don’t decompose so nicely:

• a reward score if all tags are equal

• a reward score for the number of times each tag was used

In general, DP might no longer be applicable. But Gibbs still works:

ACAAGTCT

ACAAGACT
ACAAGCCT
ACAAGGCT
ACAAGTCT

score(·)
-2
-1
1
2

softmax
.013
.035
.256
.696

sample
ACAAGGCT

14/∞

Sequence Tagging with Global Scores
In sequence tagging, the efficient DP algorithm was possible thanks to the “chain”
structure of the score

score(y) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj .

In some cases you might want score terms that don’t decompose so nicely:

• a reward score if all tags are equal

• a reward score for the number of times each tag was used

In general, DP might no longer be applicable. But Gibbs still works:

ACAAGTCT

ACAAGACT
ACAAGCCT
ACAAGGCT
ACAAGTCT

score(·)
-2
-1
1
2

softmax
.013
.035
.256
.696

sample
ACAAGGCT

14/∞

Sequence Tagging with Global Scores
In sequence tagging, the efficient DP algorithm was possible thanks to the “chain”
structure of the score

score(y) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj .

In some cases you might want score terms that don’t decompose so nicely:

• a reward score if all tags are equal

• a reward score for the number of times each tag was used

In general, DP might no longer be applicable. But Gibbs still works:

ACAAGTCT

ACAAGACT
ACAAGCCT
ACAAGGCT
ACAAGTCT

score(·)
-2
-1
1
2

softmax
.013
.035
.256
.696

sample
ACAAGGCT

14/∞

Sequence Tagging with Global Scores
In sequence tagging, the efficient DP algorithm was possible thanks to the “chain”
structure of the score

score(y) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj .

In some cases you might want score terms that don’t decompose so nicely:

• a reward score if all tags are equal

• a reward score for the number of times each tag was used

In general, DP might no longer be applicable. But Gibbs still works:

ACAAG-CT

ACAAGACT
ACAAGCCT
ACAAGGCT
ACAAGTCT

score(·)
-2
-1
1
2

softmax
.013
.035
.256
.696

sample
ACAAGGCT

14/∞

Sequence Tagging with Global Scores
In sequence tagging, the efficient DP algorithm was possible thanks to the “chain”
structure of the score

score(y) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj .

In some cases you might want score terms that don’t decompose so nicely:

• a reward score if all tags are equal

• a reward score for the number of times each tag was used

In general, DP might no longer be applicable. But Gibbs still works:

ACAAG-CT

ACAAGACT
ACAAGCCT
ACAAGGCT
ACAAGTCT

score(·)
-2
-1
1
2

softmax
.013
.035
.256
.696

sample
ACAAGGCT

14/∞

Sequence Tagging with Global Scores
In sequence tagging, the efficient DP algorithm was possible thanks to the “chain”
structure of the score

score(y) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj .

In some cases you might want score terms that don’t decompose so nicely:

• a reward score if all tags are equal

• a reward score for the number of times each tag was used

In general, DP might no longer be applicable. But Gibbs still works:

ACAAG-CT

ACAAGACT
ACAAGCCT
ACAAGGCT
ACAAGTCT

score(·)
-2
-1
1
2

softmax
.013
.035
.256
.696

sample
ACAAGGCT

14/∞

Sequence Tagging with Global Scores
In sequence tagging, the efficient DP algorithm was possible thanks to the “chain”
structure of the score

score(y) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj .

In some cases you might want score terms that don’t decompose so nicely:

• a reward score if all tags are equal

• a reward score for the number of times each tag was used

In general, DP might no longer be applicable. But Gibbs still works:

ACAAG-CT

ACAAGACT
ACAAGCCT
ACAAGGCT
ACAAGTCT

score(·)
-2
-1
1
2

softmax
.013
.035
.256
.696

sample
ACAAGGCT

14/∞

Sequence Tagging with Global Scores
In sequence tagging, the efficient DP algorithm was possible thanks to the “chain”
structure of the score

score(y) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj .

In some cases you might want score terms that don’t decompose so nicely:

• a reward score if all tags are equal

• a reward score for the number of times each tag was used

In general, DP might no longer be applicable. But Gibbs still works:

ACAAG-CT

ACAAGACT
ACAAGCCT
ACAAGGCT
ACAAGTCT

score(·)
-2
-1
1
2

softmax
.013
.035
.256
.696

sample
ACAAGGCT

14/∞

Markov Chain Monte Carlo (MCMC)

Gibbs sampling is an instance of a powerful algorithm family known as MCMC.

These algorithms do not directly generate a single sample, but rather describe a
process (chain) that slowly converges to the desired distribution.

Consecutive steps in the chain are nearly identical: they would not be good
samples. You must wait enough steps in between. Finicky in general.

15/∞

Gibbs Works Often But Not Always.

For highly constrained problems, Gibbs
sampling might not work.

For instance, for the assignment problem,
if n = m:

Given all other assignments but one,
there is only one possible choice to
sample from, so Gibbs is instantly stuck.

(There are some possible variations that
might work here, hope is not lost, but it is
definitely not a straightforward
application.)

16/∞

Other Ways To Sample

Sampling from a (discrete) distribution in general is a problem that is still widely
researched.

This is especially the case if the distribution does not have a computable
normalizing constant

e.g., Pr(y |x) = exp score(y)/Z when we can compute score(y) but not Z .

Some useful, very general methods, rely on sampling from an easier proposal
distribution: accept-reject sampling, importance sampling. The performance
depends heavily on how different the proposal is from the desired distribution.

Refer to texts about Monte Carlo methods to learn more.

17/∞

Summary

Sampling from structured models

• another fundamental computation alongside argmax and logsumexp

• if the structure is solvable by DP, sampling is efficient: like following
backpointers, but random, using quantities computed by the DP.

• if we can sample, we can learn probabilistic models, even without logsumexp.

Gibbs sampling

• sample structures by updating variables one at a time

• works for many (but not all) structures, including Potts models for grids.

• simple, but not great; hard to say how many updates needed.

18/∞

	Sampling From Structured Probabilistic Models
	Learning Via Sampling
	Intractable Structured Models

