
Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Graph Matching
& Linear Programming

Part 1: Matchings in Graphs

Lecture 12

https://vene.ro/mlsd

Graph Matching
& Linear Programming

1 Matchings in Graphs

2 Finding a Maximum-Weight Matching

3 Linear Programming

4 Bipartite graphs and the assignment problem

2/∞

Today’s agenda

• So far, we’ve seen two examples of structure prediction using dynamic programming: I
wouldn’t be too surprised if you thought DP is all you need.

• DP is widely applicable and, once you get the principle, you can come up with your
own DP algorithms (e.g.: alignments with transitions, rewarding MM more)

• Today we see a problem that is:
• relatively easy to state
• widely applicable in practice
• not tractable by DP: in fact, logsumexp is intractable!

• There are specialized algorithms for argmax for this problem. But you need to know
them; sometimes they are hard to implement, etc.

• So, I will teach you a magic trick: formulate and solve (almost) any structured argmax
problem using linear programming.

3/∞

Matchings in Graphs
Given an undirected graph G = (V ,E), a matching
(sometimes: coupling) is a subset of edgesM ⊆ E such
that no two edges inM touch.

Examples:

• M = {(1, 2), (3, 4), (5, 6)}
• M = {(1, 2), (4, 6)}
• M = {}

If the graph is weighted G = (V ,E ,w), where w (e) is
the weight of edge e ∈ E , we define the weight of a
matching:

w (M) = ∑
e∈M w (e)

1

2 3

4 5

6

A maximum weight matching is a matchingM maximizing w (M).

4/∞

Matchings in Graphs
Given an undirected graph G = (V ,E), a matching
(sometimes: coupling) is a subset of edgesM ⊆ E such
that no two edges inM touch.

Examples:
• M = {(1, 2), (3, 4), (5, 6)}

• M = {(1, 2), (4, 6)}
• M = {}

If the graph is weighted G = (V ,E ,w), where w (e) is
the weight of edge e ∈ E , we define the weight of a
matching:

w (M) = ∑
e∈M w (e)

1

2 3

4 5

6

A maximum weight matching is a matchingM maximizing w (M).

4/∞

Matchings in Graphs
Given an undirected graph G = (V ,E), a matching
(sometimes: coupling) is a subset of edgesM ⊆ E such
that no two edges inM touch.

Examples:
• M = {(1, 2), (3, 4), (5, 6)}
• M = {(1, 2), (4, 6)}

• M = {}

If the graph is weighted G = (V ,E ,w), where w (e) is
the weight of edge e ∈ E , we define the weight of a
matching:

w (M) = ∑
e∈M w (e)

1

2 3

4 5

6

A maximum weight matching is a matchingM maximizing w (M).

4/∞

Matchings in Graphs
Given an undirected graph G = (V ,E), a matching
(sometimes: coupling) is a subset of edgesM ⊆ E such
that no two edges inM touch.

Examples:
• M = {(1, 2), (3, 4), (5, 6)}
• M = {(1, 2), (4, 6)}
• M = {}

If the graph is weighted G = (V ,E ,w), where w (e) is
the weight of edge e ∈ E , we define the weight of a
matching:

w (M) = ∑
e∈M w (e)

1

2 3

4 5

6

A maximum weight matching is a matchingM maximizing w (M).

4/∞

Weighted Matchings in Graphs
Given an undirected graph G = (V ,E), a matching
(sometimes: coupling) is a subset of edgesM ⊆ E such
that no two edges inM touch.

Examples:
• M = {(1, 2), (3, 4), (5, 6)}
• M = {(1, 2), (4, 6)}
• M = {}

If the graph is weighted G = (V ,E ,w), where w (e) is
the weight of edge e ∈ E , we define the weight of a
matching:

w (M) = ∑
e∈M w (e)

1

2 3

4 5

6

A maximum weight matching is a matchingM maximizing w (M).

4/∞

Weighted Matchings in Graphs
Given an undirected graph G = (V ,E), a matching
(sometimes: coupling) is a subset of edgesM ⊆ E such
that no two edges inM touch.

Examples:
• M = {(1, 2), (3, 4), (5, 6)}
• M = {(1, 2), (4, 6)}
• M = {}

If the graph is weighted G = (V ,E ,w), where w (e) is
the weight of edge e ∈ E , we define the weight of a
matching:

w (M) = ∑
e∈M w (e)

1

2 3

4 5

6

A maximum weight matching is a matchingM maximizing w (M).

4/∞

Applications in Biology: Protein Structure

R

R

R

R

R

Primary structure Secondary structure

Tertiary structure Quaternary structure

α-helix

Polypeptide chain

Amino
acid

β-pleated sheet

Subunit 1 Subunit 2

Image courtesy of dr. Laura Carroll, created with BioRender.com 5/∞

Applications in Biology: Protein Structure

One of the many forms of protein
structure: covalent bonds between parts
of the chain.

Ex: disulfide bridges between Cysteine
residues.

These grant stability, determine protein
folding patterns, etc.

But which pairs will form bonds and
which won’t?

Disulfide bridges in human insulin. Source:
https://www.chem.ucla.edu/~harding/IGOC/D/

disulfide_bridge.html, public domain image.

6/∞

https://www.chem.ucla.edu/~harding/IGOC/D/disulfide_bridge.html
https://www.chem.ucla.edu/~harding/IGOC/D/disulfide_bridge.html

Applications in Biology: Protein Structure

One of the many forms of protein
structure: covalent bonds between parts
of the chain.

Ex: disulfide bridges between Cysteine
residues.

These grant stability, determine protein
folding patterns, etc.

But which pairs will form bonds and
which won’t?

6/∞

Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Graph Matching
& Linear Programming

Part 2: Finding a Maximum-Weight Matching

Lecture 12

https://vene.ro/mlsd

Graph Matching
& Linear Programming

1 Matchings in Graphs

2 Finding a Maximum-Weight Matching

3 Linear Programming

4 Bipartite graphs and the assignment problem

8/∞

Greedy Approaches Fail

9 910

versus

9 910

9/∞

Greedy Approaches Fail

9 910

versus

9 910

9/∞

Greedy Approaches Fail

9 910

versus

9 910

9/∞

Finding a Maximum-Weight Matching

Spoiler: a good algorithm exists. But what if:

• you can’t find it / don’t know the right keyword to search for

• no good implementation is available?

• you want to modify the problem slightly?

• you just want to prototype something to make sure the rest of your model
makes sense?

10/∞

Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Graph Matching
& Linear Programming

Part 3: Linear Programming

Lecture 12

https://vene.ro/mlsd

Graph Matching
& Linear Programming

1 Matchings in Graphs

2 Finding a Maximum-Weight Matching

3 Linear Programming

4 Bipartite graphs and the assignment problem

12/∞

A crash course in linear optimization (“programming”)
Here once again “programming” means “optimization”.

Optimization problem (in general):
A problem of the form:

minimize F (y)
subject to Gi (y) ≤ 0, i = 1, . . . , p

y ∈ Òd

Notation/terminology:

• yj are called the variables,

• F is called the “objective”,

• Gi are constraints.

Here, y is just a variable.

Example: machine learning model training:
minimize L(θ)

where L is a total loss over a training set, and θ are the model weights,
is an optimization problem (but not a linear one usually).

13/∞

A crash course in linear optimization
An optimization problem is linear if the objective F and all constraints Gi are linear:

Linear program (LP):
A problem of the form:

minimize a · y
subject to g i · y + bj ≤ 0, i = 1, . . . , p

y ∈ Òd

General-purpose algorithms can solve
this problem in polynomial time in
expectation.

Integer linear program (ILP):
A problem of the form:

minimize a · y
subject to g i · y + bj ≤ 0, i = 1, . . . , p

y ∈ Úd

This is discrete optimization!

Useful heuristics exist, but very hard in
general. (NP-complete!)

14/∞

A crash course in linear optimization
An optimization problem is linear if the objective F and all constraints Gi are linear:

Linear program (LP):
A problem of the form:

minimize a · y
subject to g i · y + bj ≤ 0, i = 1, . . . , p

y ∈ Òd

General-purpose algorithms can solve
this problem in polynomial time in
expectation.

Integer linear program (ILP):
A problem of the form:

minimize a · y
subject to g i · y + bj ≤ 0, i = 1, . . . , p

y ∈ Úd

This is discrete optimization!

Useful heuristics exist, but very hard in
general. (NP-complete!)

14/∞

ILP for structure prediction

• ILPs with boolean variables yi ∈ {0, 1} can express many structured problems
we care about.

• Think of this like a “domain-specific language”:

• Just like pytorch can be used to express and train ML models, the language of
LP can be used to express and solve argmax problems in structure prediction.

• Whenever possible, specialized algorithms are much better.

• But LP is great for prototyping, testing, exploring small changes, etc...

15/∞

ILP for max-weight matchings
Finding a max-weight matching in a weighted graph G = (V ,E ,w):

• A variable ye ∈ {0, 1} for each e ∈ E .
• In a matching, for each node, at most
one incident edge can be selected.
For any u ∈ V define
E (u) = {e ∈ E : e = (u, ·) or e = (·, u)}.
Then we need:

©­«
∑

e∈E (u)
ye
ª®¬ ≤ 1, for every node u ∈ V

• Maximize the sum of weights of the
selected edges:∑

e∈E
w (e)ye

Putting it all together,

Max-weight matching ILP

maximize
∑
e∈E

w (e)ye

subject to ©­«
∑

e∈E (u)
ye
ª®¬ ≤ 1, for all u ∈ V ,

ye ∈ {0, 1} for all e ∈ E .

Plug this into a general-purpose solver and
you have exact solutions for small problems.
(In general, solving ILP is exponential in the
problem size.)

16/∞

Relaxing the integer constraints
ILP is hard, but LP (without I) is much easier.
(Continuous optimization generally easier than discrete optimization.)
This leads to the fractional relaxation that can be solved in polynomial time:

Max-weight matching relaxed LP

maximize
∑
e∈E

w (e)ye

subject to ©­«
∑

e∈E (u)
ye
ª®¬ ≤ 1, for all u ∈ V ,

0 ≤ ye ≤ 1 for all e ∈ E .

In fact, since every edge participates in at least one sum constraint, the constraints xe ≤ 1 are redundant and can
be removed. But leaving them in is not a problem. 17/∞

Relaxations generally introduce approximation

The ILP is exact, the relaxed LP is not: 3

2

1

10
10

10

The ILP constraints give:
y12 + y13 ≤ 1
y12 + y23 ≤ 1
y13 + y23 ≤ 1
yij ∈ {0, 1}

Write y = (y12, y23, y13). Trying all 23 combinations
shows that the only allowed configurations are:
y = (0, 0, 0) obj= 0
y = (1, 0, 0) obj= 10
y = (0, 1, 0) obj= 10
y = (0, 0, 1) obj= 10

Relaxing the integer constraints still allows these
configurations but also allows the fractional one

y =

(
1
2
,
1
2
,
1
2

)
But this “configuration” has higher objective:

10
2

+ 10
2

+ 10
2

= 15 > 10

In general, fractional relaxations can have
spurious solutions.

18/∞

Relaxations generally introduce approximation

The ILP is exact, the relaxed LP is not: 3

2

1

10
10

10

The ILP constraints give:
y12 + y13 ≤ 1
y12 + y23 ≤ 1
y13 + y23 ≤ 1
yij ∈ {0, 1}

Write y = (y12, y23, y13). Trying all 23 combinations
shows that the only allowed configurations are:
y = (0, 0, 0) obj= 0
y = (1, 0, 0) obj= 10
y = (0, 1, 0) obj= 10
y = (0, 0, 1) obj= 10

Relaxing the integer constraints still allows these
configurations but also allows the fractional one

y =

(
1
2
,
1
2
,
1
2

)
But this “configuration” has higher objective:

10
2

+ 10
2

+ 10
2

= 15 > 10

In general, fractional relaxations can have
spurious solutions.

18/∞

Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Graph Matching
& Linear Programming

Part 4: Bipartite graphs and the assignment problem

Lecture 12

https://vene.ro/mlsd

Graph Matching
& Linear Programming

1 Matchings in Graphs

2 Finding a Maximum-Weight Matching

3 Linear Programming

4 Bipartite graphs and the assignment problem

20/∞

Bipartite weighted matching: the assignment problem
An undirected graph G = (V ,E) is called bipartite if

• V = VA ∪ VB with VA ∩ VB = ∅

• every edge is from some node in VA to some node in VB , never within.

Write n = |VA | and m = |VB | and assume n ≤ m (otherwise, swap them.)

The assignment problem, e.g., optimally assigning tasks VA to workers VB :
max-weight matchings in a bipartite graphs, with the additional constraint
that every node in VA gets assigned.

The weights and variables can be organized into n ×m matrices A and Y .
The node-degree constraints are row and column sums:{∑m

j=1 yij = 1 for i = 1, . . . , n∑n
i=1 yij ≤ 1 for j = 1, . . . ,m

In this bipartite case, it can be shown that the LP relaxation is exact!

21/∞

Bipartite weighted matching LP

Bipartite weighted matching LP

maximize
n∑
i=1

m∑
j=1

aijyij

subject to
m∑
j=1

yij = 1 for i = 1, . . . , n

n∑
i=1

yij ≤ 1 for j = 1, . . . ,m

yij ≥ 0 for all i , j .

22/∞

Learning To Match
Matchings can be structured outputs in ML tasks: we train a model that predicts
the edge weights. For example:

• Protein structure: which pairs of Cysteine residues are more compatible?

• Learning to match students with thesis projects (recommender system)

• Matching words in foreign language sentence translations (reordering)

Example architecture: parametrize edge weights aij = u i · v j where u i is an
embedding of a student i and v j embedding of the project j (each possibly passed
through multiple hidden layers).

For predicting assignment, can solve the LP.

However, for learning, logsumexp over all matchings is intractable!

23/∞

Learning To Match
Matchings can be structured outputs in ML tasks: we train a model that predicts
the edge weights. For example:

• Protein structure: which pairs of Cysteine residues are more compatible?

• Learning to match students with thesis projects (recommender system)

• Matching words in foreign language sentence translations (reordering)

Example architecture: parametrize edge weights aij = u i · v j where u i is an
embedding of a student i and v j embedding of the project j (each possibly passed
through multiple hidden layers).

For predicting assignment, can solve the LP.

However, for learning, logsumexp over all matchings is intractable!
23/∞

Non-Probabilistic Structure Learning

What can we do when we cannot compute the probabilistic loss:

− logP (y) = LNLL(y) = − score(y) + log
∑
y ′∈Y

exp score(y ′)

Recall: An alternative training objective is the perceptron loss:

LPerc(y) = − score(y) + max
y ′∈Y

score(y ′)

The Perceptron loss can sometimes be computed using (I)LP!

24/∞

Non-Probabilistic Structure Learning

What can we do when we cannot compute the probabilistic loss:

− logP (y) = LNLL(y) = − score(y) + log
∑
y ′∈Y

exp score(y ′)

Recall: An alternative training objective is the perceptron loss:

LPerc(y) = − score(y) + max
y ′∈Y

score(y ′)

The Perceptron loss can sometimes be computed using (I)LP!

24/∞

Structured Perceptron Learning

LPerc(y) = − score(y) + max
y ′∈Y

score(y ′)

When we can
• represent the structures y as vectors and Y as linear constraints,
• write score(y) = a · y ,

(e.g., our graph matching applications). Then:
• solve the ILP y ∗ = argmaxy ∈Y score(y) or the LP y ∗ = argmaxy ∈Ỹ score(y)
• LPerc(y) = −a · y + a · y ∗

In the relaxed perceptron, fractional solutions are allowed: there is theory that
shows this is ok and can even work better.
In both cases, as long as you have any code (non-pytorch) to find y ∗, plug it in and
pytorch gives the correct gradient +aLPerc(y) = y⋆ − y .

25/∞

Practical Example: Knapsack problems

Say we have a knapsack that can hold B
liters, and we are packing for a trip.

We have n objects, each with a volume
vi liters, and with a score (value) ai . We
want to pack the most valuable items.

Weighted Knapsack (I)LP

maximize
n∑
i=1

aiyi

subject to
n∑
i=1

viyi ≤ B

(if ILP:) yi ∈ {0, 1} for all i
(if LP:) yi ∈ [0, 1] for all i

import numpy as np
import cvxpy as cp

v = np.array([.5, .1, .9, .2, 3.0])
a = np.array([-.2, -.5, .3, .2, 1.0])
B = 4.0

n = v.shape[0]
y = cp.Variable(n, integer=False) # integer=True for ILP

objective = a @ y
constraints = [v @ y <= B,

y >= 0, # applied elementwise
y <= 1] # applied elementwise

problem = cp.Problem(cp.Maximize(objective), constraints)
problem.solve()

print(y.value.round(2))
if LP: [0. 0. 0.95 1. 0.98]
if ILP: [0. 0. 1.0 0. 1.0]

26/∞

Ease of Prototyping Extensions

Say you are now asked to solve the Knapsack problem with an additional
requirement: the first two items are mutually exclusive.

Can right away add a constraint y1 + y2 ≤ 1.

A dedicated algorithm can be much faster, exact, but not as easy to modify.

And if you come up with a better specialized algorithm, you should still test it
against the ILP.

27/∞

	Matchings in Graphs
	Finding a Maximum-Weight Matching
	Linear Programming
	Bipartite graphs and the assignment problem

