Sequence Alignments

Part 1: Alignments: Definition, Construction

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Sequence Alignments

(1) Alignments: Definition, Construction

(2) Dynamic Programming Algorithms
(3) Evaluation

Alignments Between Sequences

We have two related sequences of possibly different lengths.
How to best line them up using insertions / deletions (i.e., monotonically)?

Alignments Between Sequences

We have two related sequences of possibly different lengths.
How to best line them up using insertions / deletions (i.e., monotonically)?
biology:
DNA, RNA, or protein
sequences:
align CAAT and ATTACA:
--CA-AT
ATTACA-

Alignments Between Sequences

We have two related sequences of possibly different lengths.
How to best line them up using insertions / deletions (i.e., monotonically)?
biology:
DNA, RNA, or protein sequences:
align CAAT and ATTACA:
--CA-AT
ATTACA-
nlp:
find the best sequence of edits between strings
(e.g., spell checking etc)
kittensitting

Alignments Between Sequences

We have two related sequences of possibly different lengths.
How to best line them up using insertions / deletions (i.e., monotonically)?
biology:
DNA, RNA, or protein sequences:
align CAAT and ATTACA:
--CA-AT
ATTACA-
nlp:
find the best sequence of edits between strings
(e.g., spell checking etc)
kittensitting
signal processing:
stretch or compress signals (e.g., audio) to match.

Alignment Are Structures

Alignments are structured objects: many possible alignments between same strings.
$\begin{array}{llllll}\text {--CA-AT } & \text {-CAAT- } & \text { CAAT-- } & \text { CAAT------ } & \text { CAAT----- } & \\ \text { ATTACA- } & \text { ATTACA } & \text { ATTACA } & \text {----ATTACA } & \text {---ATTACA } & \ldots\end{array}$

Alignment Tables

At point (i, j) in the grid we either:
M: match tokens i in seq1 to j in seq2,
I: skip token i in seq1,
D: skip token j in seq2.
Some alignments and corresponding trajectories:

Alignment Tables

At point (i, j) in the grid we either:
M: match tokens i in seq1 to j in seq2,
I: skip token i in seq1,
D: skip token j in seq2.
Some alignments and corresponding trajectories:

- IMMMDDD: $\begin{aligned} & \text { CATT---- } \\ & \text {-ATTACA }\end{aligned}$

Alignment Tables

At point (i, j) in the grid we either:
M: match tokens i in seq1 to j in seq2,
I: skip token i in seq1,
D: skip token j in seq2.
Some alignments and corresponding trajectories:

- IMMMDDD: $\begin{aligned} & \text { CATT---- } \\ & \text {-ATTACA }\end{aligned}$
- DDMMDMI: $\begin{aligned} & \text {--CA-TT } \\ & \text { ATTACA- }\end{aligned}$

Alignment Tables

At point (i, j) in the grid we either:
M: match tokens i in seq1 to j in seq2,
I: skip token i in seq1,
D: skip token j in seq2.
Some alignments and corresponding trajectories:

- IMMMDDD: $\begin{aligned} & \text { CATT--- } \\ & \text {-ATTACA }\end{aligned}$
- DDMMDMI: --CA-TT
- MMMMDD: CATT--

ATTACA

Alignment Tables

At point (i, j) in the grid we either:
M: match tokens i in seq1 to j in seq2,
I: skip token i in seq1,
D: skip token j in seq2.
Some alignments and corresponding trajectories:

- IMMMDDD: $\begin{aligned} & \text { CATT--- } \\ & \text {-ATTACA }\end{aligned}$
- DDMMDMI: --CA-TT
- MMMMDD: CATT--
- DDDDMDIII: ----C-ATT

ATTACA---

Alignment Tables

DAG representation:
Nodes at grid points

$$
V=\{(i, j): 0 \leq i \leq n, 0 \leq j \leq m\}
$$

At point (i, j) in the grid we either:
M: match tokens i in seq1 to j in seq2,
I: skip token i in seq1,
D: skip token j in seq2.
Some alignments and corresponding trajectories:

- IMMMDDD: $\begin{aligned} & \text { CATT--- } \\ & \text {-ATTACA }\end{aligned}$
- DDMMDMI: --CA-TT
- MMMMDD: CATT--
- DDDDMDIII: ----C-ATT

Alignment Tables

DAG representation:
Nodes at grid points

$$
V=\{(i, j): 0 \leq i \leq n, 0 \leq j \leq m\}
$$

Three incoming edges for each node.

At point (i, j) in the grid we either:
M: match tokens i in seq1 to j in seq2,
I: skip token i in seq1,
D: skip token j in seq2.
Some alignments and corresponding trajectories:

- IMMMDDD: $\begin{aligned} & \text { CATT--- } \\ & \text {-ATTACA }\end{aligned}$
- DDMMDMI: --CA-TT
- MMMMDD: CATT--
- DDDDMDIII:
----C-ATT

ATTACA---

Alignment Tables

DAG representation:
Nodes at grid points

$$
V=\{(i, j): 0 \leq i \leq n, 0 \leq j \leq m\}
$$

Three incoming edges for each node.

At point (i, j) in the grid we either:
M: match tokens i in seq1 to j in seq2,
I: skip token i in seq1,
D: skip token j in seq2.
Some alignments and corresponding trajectories:

- IMMMDDD: $\begin{aligned} & \text { CATT--- } \\ & \text {-ATTACA }\end{aligned}$
- DDMMDMI: --CA-TT
- MMMMDD: CATT--
- DDDDMDIII: ----C-ATT

है. Number of paths from $(0,0)$ to (n, m) :
$D(n, m)=\sum_{k=0}^{\min (n, m)}\binom{m}{k}\binom{n}{k} 2^{k}$ (Delannoy numbers)

Scoring an alignment

A "default" scoring strategy:

- Get a score of 1 for matching identical characters.
i.e., if action M taken at grid position (i, j) and seq1[i] == seq2[j], add 1 to the score.
- Get a score of -1 for any insertion or deletion.

Scoring an alignment

A "default" scoring strategy:

- Get a score of 1 for matching identical characters.
i.e., if action M taken at grid position (i, j) and seq1[i] == seq2[j], add 1 to the score.
- Get a score of -1 for any insertion or deletion.

Scoring an alignment

A "default" scoring strategy:

- Get a score of 1 for matching identical characters.
i.e., if action M taken at grid position (i, j) and seq1[i] == seq2[j], add 1 to the score.
- Get a score of -1 for any insertion or deletion.

Scoring an alignment

A "default" scoring strategy:

- Get a score of 1 for matching identical characters.
i.e., if action M taken at grid position (i, j) and seq1[i] == seq2[j], add 1 to the score.
- Get a score of -1 for any insertion or deletion.

Parametrized Scoring

let \boldsymbol{A} a score array of shape $(n+1, m+1,3)$:

- $a_{i, j, 0}$ is the score for Matching token i in seq 1 with token j in seq2.
- $a_{i, j, 1}$ is the score for an Insertion at (i, j) : skipping token i in seq1 when the cursor is at j in seq2.
- $a_{i, j, 2}$ is the score for a Deletion at (i, j) : skipping token j in seq 2 when the cursor is at i in seq2.
note: in these slides, we use zero-indexing into \boldsymbol{A}, but one-indexing into the sequences.
We can set the specific values of \boldsymbol{A} to replicate the default scoring from before.
But this parametrized version lets us learn how to score alignments.

Parametrized Scoring

let \boldsymbol{A} a score array of shape $(n+1, m+1,3)$:

- $a_{i, j, 0}$ is the score for Matching token i in seq 1 with token j in seq2.
- $a_{i, j, 1}$ is the score for an Insertion at (i, j) : skipping token i in seq1 when the cursor is at j in seq2.
- $a_{i, j, 2}$ is the score for a Deletion at (i, j) : skipping token j in seq 2 when the cursor is at i in seq2.
note: in these slides, we use zero-indexing into \boldsymbol{A}, but one-indexing into the sequences.
We can set the specific values of \boldsymbol{A} to replicate the default scoring from before.
But this parametrized version lets us learn how to score alignments.

Parametrized Scoring

let \boldsymbol{A} a score array of shape $(n+1, m+1,3)$:

- $a_{i, j, 0}$ is the score for Matching token i in seq 1 with token j in seq2.
- $a_{i, j, 1}$ is the score for an Insertion at (i, j) : skipping token i in seq1 when the cursor is at j in seq2.
- $a_{i, j, 2}$ is the score for a Deletion at (i, j) : skipping token j in seq 2 when the cursor is at i in seq2.
note: in these slides, we use zero-indexing into \boldsymbol{A}, but one-indexing into the sequences.
We can set the specific values of \boldsymbol{A} to replicate the default scoring from before.
But this parametrized version lets us learn how to score alignments.

Parametrized Scoring

let \boldsymbol{A} a score array of shape $(n+1, m+1,3)$:

- $a_{i, j, 0}$ is the score for Matching token i in seq1 with token j in seq2.
- $a_{i, j, 1}$ is the score for an Insertion at (i, j) : skipping token i in seq1 when the cursor is at j in seq2.
- $a_{i, j, 2}$ is the score for a Deletion at (i, j) : skipping token j in seq 2 when the cursor is at i in seq2.
note: in these slides, we use zero-indexing into \boldsymbol{A}, but one-indexing into the sequences.
We can set the specific values of \boldsymbol{A} to replicate the default scoring from before.
But this parametrized version lets us learn how to score alignments.

Sequence Alignments

Part 2: Dynamic Programming Algorithms

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Sequence Alignments

(1) Alignments: Definition, Construction
(2) Dynamic Programming Algorithms
(3) Evaluation

Dynamic Programming for Alignments

Alignments $=$ paths in DAG from $(0,0)$ to (n, m).

Dynamic Programming for Alignments

Alignments $=$ paths in DAG from $(0,0)$ to (n, m).
Computing the max score:
Fill in a table M, size $(1+n, 1+m)$,
s.t. $m_{i j}=$ the max score up to (i, j).
$m_{i j}=\left\{\begin{array}{l}m_{i-1, j-1}+a_{i, j, 0} \\ m_{i-1, j}+a_{i, j, 1} \\ m_{i, j-1}+a_{i, j, 2}\end{array} \quad\right.$ for any $i>0, j>0$.

What is a topological order?

Dynamic Programming for Alignments

Alignments $=$ paths in DAG from $(0,0)$ to (n, m).
Computing the max score:
Fill in a table M, size $(1+n, 1+m)$,
s.t. $m_{i j}=$ the max score up to (i, j).
$m_{i j}=\left\{\begin{array}{l}m_{i-1, j-1}+a_{i, j, 0} \\ m_{i-1, j}+a_{i, j, 1} \\ m_{i, j-1}+a_{i, j, 2}\end{array} \quad\right.$ for any $i>0, j>0$.
What is a topological order?
$m_{i 0}$: only one possible path for any i.

Dynamic Programming for Alignments

Alignments $=$ paths in DAG from $(0,0)$ to (n, m).
Computing the max score:
Fill in a table M, size $(1+n, 1+m)$,
s.t. $m_{i j}=$ the max score up to (i, j).
$m_{i j}=\left\{\begin{array}{l}m_{i-1, j-1}+a_{i, j, 0} \\ m_{i-1, j}+a_{i, j, 1} \\ m_{i, j-1}+a_{i, j, 2}\end{array} \quad\right.$ for any $i>0, j>0$.
What is a topological order?
$m_{i 0}$: only one possible path for any i.

Dynamic Programming for Alignments

Alignments = paths in DAG from $(0,0)$ to (n, m).
Computing the max score:
Fill in a table M, size $(1+n, 1+m)$,
s.t. $m_{i j}=$ the max score up to (i, j).
$m_{i j}=\left\{\begin{array}{l}m_{i-1, j-1}+a_{i, j, 0} \\ m_{i-1, j}+a_{i, j, 1} \\ m_{i, j-1}+a_{i, j, 2}\end{array} \quad\right.$ for any $i>0, j>0$.
What is a topological order?
$m_{i 0}$: only one possible path for any i.
$m_{0 j}$: only one possible path for any j.

Dynamic Programming for Alignments

Alignments $=$ paths in DAG from $(0,0)$ to (n, m).
Computing the max score:
Fill in a table M, size $(1+n, 1+m)$,
s.t. $m_{i j}=$ the max score up to (i, j).
$m_{i j}=\left\{\begin{array}{l}m_{i-1, j-1}+a_{i, j, 0} \\ m_{i-1, j}+a_{i, j, 1} \\ m_{i, j-1}+a_{i, j, 2}\end{array} \quad\right.$ for any $i>0, j>0$.
What is a topological order?
$m_{i 0}$: only one possible path for any i.
$m_{0 j}$: only one possible path for any j.

History of DP Alignments

Small variants of this algorithm are known by many names and were reinvented many times:

- in biology: Needleman-Wunsch, and (with a small change) Smith-Waterman.
- in compling / information retrieval, Levenshtein / Edit Distance / Wagner-Fischer

- in time series / signal processing: Dynamic Time Warping (DTW)

As far as we know, the first inventor is actually Ukrainian mathematician Taras Vintsiuk, for speech applications.

Viterbi for alignments

input: Scores $\boldsymbol{A}(n+1 \times m+1 \times 3$ array), zero-indexed
initialize \boldsymbol{F}, same shape as \boldsymbol{A},
$M_{00}=0, \quad M_{i 0}=\sum_{k=1}^{i} a_{k, 0,1}, \quad M_{0 j}=\sum_{k=1}^{j} a_{0, k, 2}$.
Forward: compute max. scores recursively
for $i=1$ to n do
for $j=1$ to m do

$$
M_{i j}=\max \left\{\begin{array}{l}
M_{i-1, j-1}+a_{i, j, 0} \\
M_{i-1, j}+a_{i, j, 1} \\
M_{i, j-1}+a_{i, j, 2}
\end{array} ; \quad \pi_{i j}=\arg \max \left\{\begin{array}{l}
M_{i-1, j-1}+a_{i, j, 0} \\
M_{i-1, j}+a_{i, j, 1} \\
M_{i, j-1}+a_{i, j, 2}
\end{array} ;\right.\right.
$$

$f^{\star}=M_{n, m}$

Backward: follow backpointers

$i=n, j=m, \boldsymbol{y}^{\star}=()$
while $(i, j) \neq(0,0)$ do
insert $\pi_{i j}$ at the front of \boldsymbol{y}^{\star},
decrease i, j, or both, depending on $\pi_{i j}$
output: The highest-scoring alignment path \boldsymbol{y}^{\star}, and its total score f^{\star}.

Forward algorithm for alignments

input: Scores $\boldsymbol{A}(n+1 \times m+1 \times 3$ array), zero-indexed initialize \boldsymbol{F}, same shape as \boldsymbol{A},

$$
F_{00}=0, \quad F_{i 0}=\sum_{k=1}^{i} a_{k, 0,1}, \quad F_{0 j}=\sum_{k=1}^{j} a_{0, k, 2}
$$

Forward: compute scores recursively

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \text { do } \\
& \text { for } j=1 \text { to } m \text { do } \\
& \qquad M_{i j}=\log \sum \exp \left\{\begin{array}{l}
M_{i-1, j-1}+a_{i, j, 0} \\
M_{i-1, j}+a_{i, j, 1} \\
M_{i, j-1}+a_{i, j, 2}
\end{array} ;\right.
\end{aligned}
$$

return $M_{n, m}$

Sequence Alignments

Part 3: Evaluation

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Sequence Alignments

(1) Alignments: Definition, Construction
(2) Dynamic Programming Algorithms
(3) Evaluation

Evaluating Alignments

So far we are representing alignments as sequences of "moves" on a grid.

How to evaluate if we predict $\hat{\boldsymbol{y}}=$ MMM when the correct label is $\boldsymbol{y}=$ IMDM?

Alignment-level accuracy always an option.
 Finer-grained eval?

Evaluating Alignments

So far we are representing alignments as sequences of "moves" on a grid.

How to evaluate if we predict $\hat{\boldsymbol{y}}=$ MMM when the correct label is $\boldsymbol{y}=$ IMDM?

Alignment-level accuracy always an option. Finer-grained eval?

In protein alignment, we care most about getting the aligned indices (i, j) right.

indices $(\hat{\boldsymbol{y}})=\{(1,1),(2,2),(3,3)\}$, indices $(\boldsymbol{y})=\{(2,1),(3,3)\}$.
(getting the M-edges right!)

- precision: n. correct M-edges / n. predicted M-edges
- recall: n. correct M-edges / n. true M-edges
- F-score: harmonic average of P and R.

Summary

- Monotonic alignments between two sequences.
- Once again, dynamic programming gives us polynomial-time complexity.
- Algorithm rediscovered many times across many different fields under different names.

