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Alignments Between Sequences

We have two related sequences of possibly different lengths.

How to best line them up using insertions / deletions (i.e., monotonically)?

biology:

DNA, RNA, or protein
sequences:

align CAAT and ATTACA:

--CA-AT
ATTACA-

nlp:

find the best sequence of
edits between strings

(e.g., spell checking etc)

kitten-
sitting

signal processing:

stretch or compress signals
(e.g., audio) to match.
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Alignment Are Structures

Alignments are structured objects: many possible alignments between same strings.

--CA-AT -CAAT- CAAT-- CAAT------ CAAT-----
ATTACA- ATTACA ATTACA ----ATTACA ---ATTACA ...
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Alignment Tables
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DAG representation:

Nodes at grid points
V = {(i , j) : 0 ≤ i ≤ n, 0 ≤ j ≤ m}

Three incoming edges for each node.

Number of paths from (0, 0) to (n,m):
D (n,m) = ∑min(n,m)

k=0
(m
k

) (n
k

)
2k (Delannoy numbers)

At point (i , j) in the grid we either:

M: match tokens i in seq1 to j in seq2,
I: skip token i in seq1,
D: skip token j in seq2.

Some alignments and corresponding trajectories:

• IMMMDDD: CATT---
-ATTACA

• DDMMDMI: --CA-TT
ATTACA-

• MMMMDD: CATT--
ATTACA

• DDDDMDIII: ----C-ATT
ATTACA---
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Scoring an alignment
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A “default” scoring strategy:

• Get a score of 1 for matching
identical characters.
i.e., if action M taken at grid position (i , j)
and seq1[i] == seq2[j], add 1 to the
score.

• Get a score of −1 for any insertion or
deletion.
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Parametrized Scoring

A
1
T

2
T

3
A

4
C

5
A

6

C
1

A
2

T
3

T
4

0

(1,1,0)

(2,2,0)

(3,3,0)

(4,4,0)

(4,5,2) (4,6,2)

(1,0,1)

(2,1,0)

(3,2,0)

(4,3,0)

(4,4,2) (4,5,2) (4,6,2)

(0,1,2) (0,2,2)
(1,3,0)

(2,4,0)

(2,5,2)
(3,6,0)

(4,6,1)

let A a score array of shape (n + 1,m + 1, 3):

• ai ,j,0 is the score for Matching token i in seq1
with token j in seq2.

• ai ,j,1 is the score for an Insertion at (i , j):
skipping token i in seq1 when the cursor is at
j in seq2.

• ai ,j,2 is the score for a Deletion at (i , j):
skipping token j in seq2 when the cursor is at
i in seq2.
note: in these slides, we use zero-indexing
into A, but one-indexing into the sequences.

We can set the specific values of A to replicate the default scoring from before.

But this parametrized version lets us learn how to score alignments.
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Dynamic Programming for Alignments
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F=

0 a012
a012
+a022

. . .

a101

a101
+a201

. . .

Alignments = paths in DAG from (0, 0) to (n,m).

Computing the max score:
Fill in a table M , size (1 + n, 1 +m),
s.t. mij = the max score up to (i , j).

mij =


mi−1,j−1 + ai ,j,0

mi−1,j + ai ,j,1

mi ,j−1 + ai ,j,2

for any i > 0, j > 0.

What is a topological order?

mi0: only one possible path for any i .

m0j : only one possible path for any j .
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History of DP Alignments

Small variants of this algorithm are known by
many names and were reinvented many
times:

• in biology: Needleman-Wunsch,
and (with a small change)
Smith-Waterman.

• in compling / information retrieval,
Levenshtein / Edit Distance /
Wagner-Fischer

• in time series / signal processing:
Dynamic Time Warping (DTW)

As far as we know, the first inventor is
actually Ukrainian mathematician Taras
Vintsiuk, for speech applications.
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Viterbi for alignments

input: Scores A (n + 1 ×m + 1 × 3 array), zero-indexed
initialize F , same shape as A,
M00 = 0, Mi0 =

∑i
k=1 ak,0,1, M0j =

∑j
k=1 a0,k,2.

Forward: compute max. scores recursively
for i = 1 to n do

for j = 1 to m do

Mij = max


Mi−1,j−1 + ai ,j,0

Mi−1,j + ai ,j,1

Mi ,j−1 + ai ,j,2

; πij = argmax


Mi−1,j−1 + ai ,j,0

Mi−1,j + ai ,j,1

Mi ,j−1 + ai ,j,2

;

f ⋆ = Mn,m

Backward: follow backpointers
i = n, j = m, y⋆ = ()
while (i , j) , (0, 0) do

insert πij at the front of y⋆,
decrease i , j , or both, depending on πij

output: The highest-scoring alignment path y⋆, and its total score f ⋆.
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Forward algorithm for alignments

input: Scores A (n + 1 ×m + 1 × 3 array), zero-indexed
initialize F , same shape as A,
F00 = 0, Fi0 =

∑i
k=1 ak,0,1, F0j =

∑j
k=1 a0,k,2.

Forward: compute scores recursively
for i = 1 to n do

for j = 1 to m do

Mij = log
∑
exp


Mi−1,j−1 + ai ,j,0

Mi−1,j + ai ,j,1

Mi ,j−1 + ai ,j,2

;

returnMn,m
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Evaluating Alignments

So far we are representing alignments as sequences of
“moves” on a grid.

How to evaluate if we predict ŷ = MMM
when the correct label is y = IMDM?

Alignment-level accuracy always an option.
Finer-grained eval?

In protein alignment, we care most about getting the
aligned indices (i , j) right.

(getting the M–edges right!)

• precision: n. correct M–edges / n. predicted M–edges
• recall: n. correct M–edges / n. true M–edges
• F-score: harmonic average of P and R.

1 2 3

1

2

3

0
ŷ

1 2 3

1

2

3

0
y

indices(ŷ ) = {(1, 1), (2, 2), (3, 3)},
indices(y ) = {(2, 1), (3, 3)}.
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1 2 3

1

2

3

0
ŷ

1 2 3

1

2

3

0
y

indices(ŷ ) = {(1, 1), (2, 2), (3, 3)},
indices(y ) = {(2, 1), (3, 3)}.
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Summary

• Monotonic alignments between two sequences.

• Once again, dynamic programming gives us polynomial-time complexity.

• Algorithm rediscovered many times across many different fields under
different names.
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