Lecture 9

Sequence Segmentation

Part 1: Definition, Construction

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

1 Definition, Construction

Algorithm

• How many possible segments?

- How many possible segments?
- How many possible segmentations?

- How many possible segments?
- How many possible segmentations?
- Scoring: assign a score to every possible segment (*i*, *j*).

- How many possible segments?
- How many possible segmentations?
- Scoring: assign a score to every possible segment (*i*, *j*).
- You can visualize this as the "upper triangle" of a $(n+1) \times (n+1)$ matrix:

Lecture 9

Sequence Segmentation

Part 2: Algorithm

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

1 Definition, Construction

2 Algorithm

Nodes: one per fencepost. $V = \{0, 1, \ldots, n\}$.

Nodes: one per fencepost. $V = \{0, 1, \ldots, n\}$.

Edges: one per segment. $E = \{(i, j) : 0 \le i < j \le n\}.$

Nodes: one per fencepost. $V = \{0, 1, \ldots, n\}$.

Edges: one per segment. $E = \{(i, j) : 0 \le i < j \le n\}.$

Topologic order?

Nodes: one per fencepost. $V = \{0, 1, \ldots, n\}$.

Edges: one per segment. $E = \{(i, j) : 0 \le i < j \le n\}.$

Topologic order?

Nodes: one per fencepost. $V = \{0, 1, \ldots, n\}$.

Edges: one per segment. $E = \{(i, j) : 0 \le i < j \le n\}.$

Topologic order?

Nodes: one per fencepost. $V = \{0, 1, \ldots, n\}$.

Edges: one per segment. $E = \{(i, j) : 0 \le i < j \le n\}.$

Topologic order?

Nodes: one per fencepost. $V = \{0, 1, \ldots, n\}$.

Edges: one per segment. $E = \{(i, j) : 0 \le i < j \le n\}.$

Topologic order?

Nodes: one per fencepost. $V = \{0, 1, \ldots, n\}$.

Edges: one per segment. $E = \{(i, j) : 0 \le i < j \le n\}.$

Topologic order?

Any path from 0 to n corresponds to a segmentation of the sequence.

Viterbi for segmentation

input: segment scores $\boldsymbol{A} \in \mathbb{R}^{n \times n}$

Forward: compute recursively $m_1 = a_{01}; \pi_1 = 0$ for j = 2 to n do $m_j \leftarrow \max_{0 \le i < j} m_i + a_{ij}$ $\pi_j \leftarrow \arg \max_{0 \le i < j} m_i + a_{ij}$ $f^* = m_n$ Backward: follow backpointers $y^* = []; j \leftarrow n$ while j > 0 do $y^* = [(\pi_j, j)] + y^*$ $j = \pi_j$

Analogously, we can obtain a *Forward* algorithm for log *Z*: exercise for you.

Lecture 9

Sequence Segmentation

Part 3: Evaluation

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

1 Definition, Construction

Evaluation

True segments: y = [(0, 3), (3, 5), (5, 6), (6, 11)]

A few possible predictions: $\hat{y}_a = [(0, 11)]$

 $\hat{\mathbf{y}}_b = [(0, 1), (1, 2), \dots, (10, 11)]$

 $\hat{\boldsymbol{y}}_{c} = [(0,3), (3,5), (5,11)]$

Evaluation

True segments: y = [(0, 3), (3, 5), (5, 6), (6, 11)]

A few possible predictions: $\hat{y}_a = [(0, 11)]$

 $\hat{\boldsymbol{y}}_b = [(0, 1), (1, 2), \dots, (10, 11)]$

 $\hat{\boldsymbol{y}}_{c} = [(0,3), (3,5), (5,11)]$

The number of predicted and true segments differ.

A common way to evaluate in this scenario is:

precision =
$$\frac{n. \text{ correctly predicted segments}}{n. \text{ predicted segments}}$$

recall = $\frac{n. \text{ correctly predicted segments}}{n. \text{ true segments}}$
 $F_1 = \frac{2PR}{P+R}$

More advanced metrics can partially reward overlaps.

Lecture 9

Sequence Segmentation

Part 4: Extensions

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

1 Definition, Construction

2 Algorithm

Extension 1: bounded segment length

- can be much faster if we limit segment lengts to $L \ll n$.
- in terms of the DAG: discard edges ij where j i > L
- exercise: how does this impact the complexity of Viterbi?

Extension 1: bounded segment length

- can be much faster if we limit segment lengts to $L \ll n$.
- in terms of the DAG: discard edges ij where j i > L
- exercise: how does this impact the complexity of Viterbi?

Extension 2: labeled segments

- each segment also receives a label (e.g., PERSON, ORGANIZATION, NONE...)
- the labels are independent given the cuts: for any two nodes in the DAG, we only need to pick the best edge between them.

Extension 3: labeled + transitions

- drawing inspiration from sequence tagging: what if we want a reward/penalty for consecutive PERSON→ORGANIZATION segments?
- labels no longer independent given cuts.
- still solvable via DP, but must keep track of transitions.
- essentially a combination of the sequence tagging DAG and the segmentation DAG.

Summary

- Segmentations of a length-n sequence: $O(2^n)$ possible segmentations, $O(n^2)$ possible segments.
- Dynamic programming gives polynomial-time probabilistic segmentation models.
- Extensions can accommodate maximum lengths, labels, transitions.