Lecture 9

Sequence Segmentation

Part 1: Definition, Construction

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Sequence Segmentation

(1) Definition, Construction
(2) Algorithm
(3) Evaluation
(4) Extensions

Sequence Segmentation

The rod cutting problem: We have a rod of length n units, and we can cut it at every marker. What cuts to make to maximize the total value of the resulting pieces?

Sequence Segmentation

The rod cutting problem: We have a rod of length n units, and we can cut it at every marker. What cuts to make to maximize the total value of the resulting pieces?

DNA/RNA: A C A G A T T A C C

Sequence Segmentation

The rod cutting problem：We have a rod of length n units，and we can cut it at every marker．What cuts to make to maximize the total value of the resulting pieces？

Word segmentation：私は日本語を学習

Sequence Segmentation

The rod cutting problem: We have a rod of length n units, and we can cut it at every marker. What cuts to make to maximize the total value of the resulting pieces?

| DNA/RNA: | A | C | A | G | A | T | T A | C | C |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Sequence Segmentation

The rod cutting problem: We have a rod of length n units, and we can cut it at every marker. What cuts to make to maximize the total value of the resulting pieces?

Representing and scoring segmentations

- How many possible segments?

Representing and scoring segmentations

- How many possible segments?
- How many possible segmentations?

Representing and scoring segmentations

- How many possible segments?
- How many possible segmentations?
- Scoring: assign a score to every possible segment (i, j).

Representing and scoring segmentations

- How many possible segments?
- How many possible segmentations?
- Scoring: assign a score to every possible segment (i, j).
- You can visualize this as the "upper triangle" of a $(n+1) \times(n+1)$ matrix:

Lecture 9

Sequence Segmentation

Part 2: Algorithm

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Sequence Segmentation

(1) Definition, Construction
(2) Algorithm
(3) Evaluation
(4) Extensions

Dynamic programming: DAG formulation

Nodes: one per fencepost. $V=\{0,1, \ldots, n\}$.

Dynamic programming: DAG formulation

Nodes: one per fencepost. $V=\{0,1, \ldots, n\}$.
Edges: one per segment.
$E=\{(i, j): 0 \leq i<j \leq n\}$.

Dynamic programming: DAG formulation

Nodes: one per fencepost. $V=\{0,1, \ldots, n\}$.
Edges: one per segment. $E=\{(i, j): 0 \leq i<j \leq n\}$.

Topologic order?

Dynamic programming: DAG formulation

Nodes: one per fencepost. $V=\{0,1, \ldots, n\}$.
Edges: one per segment. $E=\{(i, j): 0 \leq i<j \leq n\}$.

Topologic order?
Any path from 0 to n corresponds to a segmentation of the sequence.

Dynamic programming: DAG formulation

Nodes: one per fencepost. $V=\{0,1, \ldots, n\}$.
Edges: one per segment. $E=\{(i, j): 0 \leq i<j \leq n\}$.

Topologic order?
Any path from 0 to n corresponds to a segmentation of the sequence.

Dynamic programming: DAG formulation

Nodes: one per fencepost. $V=\{0,1, \ldots, n\}$.
Edges: one per segment. $E=\{(i, j): 0 \leq i<j \leq n\}$.

Topologic order?
Any path from 0 to n corresponds to a segmentation of the sequence.

Dynamic programming: DAG formulation

Nodes: one per fencepost. $V=\{0,1, \ldots, n\}$.
Edges: one per segment. $E=\{(i, j): 0 \leq i<j \leq n\}$.

Topologic order?
Any path from 0 to n corresponds to a segmentation of the sequence.

Dynamic programming: DAG formulation

Viterbi for segmentation
input: segment scores $\boldsymbol{A} \in \mathbb{R}^{n \times n}$
Forward: compute recursively

$$
\begin{aligned}
& m_{1}=a_{01} ; \pi_{1}=0 \\
& \text { for } j=2 \text { to } n \text { do } \\
& m_{j} \leftarrow \quad \max _{0 \leq i<j} m_{i}+a_{i j} \\
& \pi_{j} \leftarrow \arg \max _{0 \leq i<j} m_{i}+a_{i j} \\
& f^{\star}=m_{n}
\end{aligned}
$$

Backward: follow backpointers

$$
\boldsymbol{y}^{\star}=[] ; j \leftarrow n
$$

$$
\text { while } j>0 \text { do }
$$

$$
y^{\star}=\left[\left(\pi_{j}, j\right)\right]+y^{\star}
$$

$$
j=\pi_{j}
$$

Topologic order?
Any path from 0 to n corresponds to a segmentation of the sequence.

[^0]
Lecture 9

Sequence Segmentation

Part 3: Evaluation

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Sequence Segmentation

(1) Definition, Construction
(2) Algorithm
(3) Evaluation
(4) Extensions

Evaluation

True segments: $\boldsymbol{y}=[(0,3),(3,5),(5,6),(6,11)]$
A few possible predictions:
$\hat{\boldsymbol{y}}_{a}=[(0,11)]$
$\hat{\boldsymbol{y}}_{b}=[(0,1),(1,2), \ldots,(10,11)]$
$\hat{\boldsymbol{y}}_{C}=[(0,3),(3,5),(5,11)]$

Evaluation

True segments: $\boldsymbol{y}=[(0,3),(3,5),(5,6),(6,11)]$
A few possible predictions:
$\hat{\boldsymbol{y}}_{a}=[(0,11)]$
$\hat{\boldsymbol{y}}_{b}=[(0,1),(1,2), \ldots,(10,11)]$
$\hat{\boldsymbol{y}}_{C}=[(0,3),(3,5),(5,11)]$

The number of predicted and true segments differ.
A common way to evaluate in this scenario is:

$$
\begin{aligned}
\text { precision } & =\frac{\mathrm{n} . \text { correctly predicted segments }}{\mathrm{n} . \text { predicted segments }} \\
\text { recall } & =\frac{\mathrm{n} . \text { correctly predicted segments }}{\mathrm{n} . \text { true segments }} \\
F_{1} & =\frac{2 P R}{P+R}
\end{aligned}
$$

More advanced metrics can partially reward overlaps.

Lecture 9

Sequence Segmentation

Part 4: Extensions

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Sequence Segmentation

(1) Definition, Construction
(2) Algorithm
(3) Evaluation
(4) Extensions

Extension 1: bounded segment length

- can be much faster if we limit segment lengts to $L \ll n$.
- in terms of the DAG: discard edges ij where $j-i>L$
- exercise: how does this impact the complexity of Viterbi?

Extension 1: bounded segment length

- can be much faster if we limit segment lengts to $L \ll n$.
- in terms of the DAG: discard edges ij where $j-i>L$
- exercise: how does this impact the complexity of Viterbi?

Extension 2: labeled segments

- each segment also receives a label (e.g., PERSON, ORGANIZATION, NONE...)
- the labels are independent given the cuts: for any two nodes in the DAG, we only need to pick the best edge between them.

Extension 3: labeled + transitions

- drawing inspiration from sequence tagging: what if we want a reward/penalty for consecutive PERSON \rightarrow ORGANIZATION segments?
- labels no longer independent given cuts.
- still solvable via DP, but must keep track of transitions.
- essentially a combination of the sequence tagging DAG and the segmentation DAG.

Summary

- Segmentations of a length-n sequence: $O\left(2^{n}\right)$ possible segmentations, $O\left(n^{2}\right)$ possible segments.
- Dynamic programming gives polynomial-time probabilistic segmentation models.
- Extensions can accommodate maximum lengths, labels, transitions.

[^0]: Analogously, we can obtain a Forward
 algorithm for $\log Z$: exercise for you.

