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Sequence Segmentation
The rod cutting problem: We have a rod of length n units, and we can cut it at every
marker. What cuts to make to maximize the total value of the resulting pieces?
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DNA/RNA: A C A G A T T A C C

Word segmentation:

Entity Extraction: Mayor Halsema to visit the University of Amsterdam next Friday
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Representing and scoring segmentations

0 1 2 3 4 5 6 7 8 9 10
A C A G A T T A C C cuts

[4,5]

segments

[(0,4), (4,5), (5,10)]

score

a0,4 + a4,5 + a5,10

a0,6 + a6,10

a0,1 + a1,2 + . . . + a9,10

a0,10

• How many possible segments?
• How many possible segmentations?
• Scoring: assign a score to every possible segment (i , j).
• You can visualize this as the “upper triangle” of a (n+1) × (n+1) matrix:
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Dynamic programming: DAG formulation

0 1 2 3 4 5

Nodes: one per fencepost. V = {0, 1, . . . , n}.

Edges: one per segment.
E = {(i , j) : 0 ≤ i < j ≤ n}.

Topologic order?

Any path from 0 to n corresponds
to a segmentation of the sequence.

Viterbi for segmentation

input: segment scores A ∈ Òn×n

Forward: compute recursively
m1 = a01; π1 = 0
for j = 2 to n do
mj ← max0≤i<j mi + aij
πj ← argmax0≤i<j mi + aij
f ⋆ = mn

Backward: follow backpointers
y⋆ = []; j ← n
while j > 0 do
y⋆ = [(πj , j)] + y⋆

j = πj

Analogously, we can obtain a Forward
algorithm for logZ : exercise for you.
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Evaluation

0 1 2 3 4 5 6 7 8 9 10 11

c a t ’ s c l a w s

True segments: y = [(0, 3), (3, 5), (5, 6), (6, 11)]

A few possible predictions:
ŷa = [(0, 11)]

ŷb = [(0, 1), (1, 2), . . . , (10, 11)]

ŷc = [(0, 3), (3, 5), (5, 11)]

The number of predicted and true segments differ.

A common way to evaluate in this scenario is:

precision =
n. correctly predicted segments

n. predicted segments

recall = n. correctly predicted segments
n. true segments

F1 =
2PR
P + R

More advanced metrics can partially reward
overlaps.
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Extension 1: bounded segment length

0 1 2 3 4 5

• can be much faster if we limit segment lengts to L ≪ n.

• in terms of the DAG: discard edges ij where j − i > L

• exercise: how does this impact the complexity of Viterbi?
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Extension 2: labeled segments

PER
ORG
NONE

• each segment also receives a label (e.g., PERSON, ORGANIZATION, NONE...)

• the labels are independent given the cuts: for any two nodes in the DAG, we
only need to pick the best edge between them.
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Extension 3: labeled + transitions

• drawing inspiration from sequence tagging: what if we want a reward/penalty
for consecutive PERSON→ORGANIZATION segments?

• labels no longer independent given cuts.

• still solvable via DP, but must keep track of transitions.

• essentially a combination of the sequence tagging DAG
and the segmentation DAG.
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Summary

• Segmentations of a length-n sequence: O (2n) possible segmentations, O (n2)
possible segments.

• Dynamic programming gives polynomial-time probabilistic segmentation
models.

• Extensions can accommodate maximum lengths, labels, transitions.
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