Lecture 9

Sequence Tagsing

Part 1: Sequence Tagging

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Outline:

(1) Sequence Tagging

Definition and examples

> Evaluation

2 Different Scoring Models
A Simple Scoring Function
A Better Scoring Model
(3) Sequence Tagging Algorithms

Dynamic Programming For Sequence Tagging
Putting It All Together

Sequence Tagging

Given a sequence of n items $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, assign to each of them one of K tags:

$$
\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \quad \text { where each } \quad y_{i} \in\{1, \ldots, K\} .
$$

Sequence Tagging

Given a sequence of n items $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, assign to each of them one of K tags:

$$
\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \quad \text { where each } \quad y_{i} \in\{1, \ldots, K\} .
$$

Example 1: Part-of-speech (POS) tagging in NLP

	the	old	man	the	boat
\boldsymbol{y}_{a}	det	adj	noun	det	noun
\boldsymbol{y}_{b}	det	noun	verb	det	noun

Sequence Tagging

Given a sequence of n items $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, assign to each of them one of K tags:

$$
\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \quad \text { where each } \quad y_{i} \in\{1, \ldots, K\} .
$$

Example 2: Frame-level phoneme classification (may be part of speech recognition)

Sequence Tagging

Given a sequence of n items $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, assign to each of them one of K tags:

$$
\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \quad \text { where each } \quad y_{i} \in\{1, \ldots, K\} .
$$

Example 3: Optical character recognition

Characterizing The Output Space

Given a sequence of n items $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, assign to each of them one of K tags:

$$
\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \quad \text { where each } \quad y_{i} \in\{1, \ldots, K\} .
$$

Input $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, e.g., a sequence of words.
Output $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$, e.g., a sequence of part-of-speech tags.
For each data point (sentence), $|\boldsymbol{y}|=|\boldsymbol{x}|$; different data points have different lengths.

Characterizing The Output Space

Given a sequence of n items $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, assign to each of them one of K tags:

$$
\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \quad \text { where each } \quad y_{i} \in\{1, \ldots, K\} .
$$

Input $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, e.g., a sequence of words.
Output $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$, e.g., a sequence of part-of-speech tags.
For each data point (sentence), $|\boldsymbol{y}|=|\boldsymbol{x}|$; different data points have different lengths.
For fixed length n, some possible outputs:

- $(1,1, \ldots, 1,1) \in \boldsymbol{y}$
- $(1,1, \ldots, 1,2) \in \boldsymbol{y}$
- $(K, K, \ldots, K, K) \in Y$

How many in terms of n ?

Part-Of-Speech Tags

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
	VERB	words for actions and processes	draw, provide, go
	PROPN INTJ	Proper noun: name of a person, organization, place, etc..	Regina, IBM, Colorado
		Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's spacial, temporal, or other relation	in, on, by, under
	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
	DET	Determiner: marks noun phrase properties	a, an, the, this
	NUM	Numeral	one, two, first, second
	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a subordinate clause such as a sentential complement	that, which
\#	PUNCT	Punctuation	; , ()
	SYM	Symbols like \$ or emoji	\$, \%
	X	Other	asdf, qwfg

Figure 8.1 The 17 parts of speech in the Universal Dependencies tagset (Nivre et al., 2016a). Features can be added to make finer-grained distinctions (with properties like number, case, definiteness, and so on).

POS Tagging Evaluation

Evaluation: sequence-level accuracy

$$
\frac{\sum_{i=1}^{N_{\text {valid }}} \boldsymbol{y}^{(i)}=\hat{\boldsymbol{y}}^{(i)}}{N_{\text {valid }}}
$$

or micro-averaged tag accuracy (writing $n^{(i)}=\left|\boldsymbol{y}^{(i)}\right|$):

$$
\frac{\sum_{i=1}^{N_{\text {valid }}} \sum_{j=1}^{n^{(i)}} y_{j}^{(i)}=\hat{y}_{j}^{(i)}}{\sum_{i=1}^{N_{\text {valid }}} n^{(i)}}
$$

Example:

true:	PRO	VERB	NUM	NOUN	ADV
pred:	PRO	VERB	NUM	NOUN	PRO
words:	there	are	70	children	there
true:	INTJ				
pred:	X				
words:	eeeeek				

Lecture 9

Sequence Tagging

Part 2: Different Scoring Models

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Outline:

(1) Sequence Tagging

Definition and examples
Evaluation
(2) Different Scoring Models

A Simple Scoring Function
A Better Scoring Model
(3) Sequence Tagging Algorithms

Dynamic Programming For Sequence Tagging
Putting It All Together

Designing A Simple Scorer

Writing $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$, take
$\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$.
\boldsymbol{A} is a matrix of scores,
e.g., computed by a NN encoder.

$\boldsymbol{A}=$| | det | noun | adj | verb |
| :---: | :---: | :---: | :---: | :---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |

Designing A Simple Scorer

Writing $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$, take $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$.	$A=$		det			ver
		the	5	0	0	0
\boldsymbol{A} is a matrix of scores, e.g., computed by a NN encoder.		old	0	1	3	0
		man	0	3	0	1
		the	5	0	0	0
the old man the boat		boat	0	5	0	0
\boldsymbol{y}_{a} det adj noun det noun						
\boldsymbol{y}_{b} det noun verb det noun						

Designing A Simple Scorer

Writing $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$, take
score $(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$.
\boldsymbol{A} is a matrix of scores,
e.g., computed by a NN encoder.
the old man the boat
\boldsymbol{y}_{a} det adj noun det noun
\boldsymbol{y}_{b} det noun verb det noun
$\operatorname{score}\left(\boldsymbol{y}_{a}\right)=$

Writing $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$, take $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$.
\boldsymbol{A} is a matrix of scores, e.g., computed by a NN encoder.
$\operatorname{score}\left(\boldsymbol{y}_{\mathrm{a}}\right)=$

$\boldsymbol{A}=$| | det | noun | adj | verb |
| :---: | :---: | :---: | :---: | :---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |

Designing A Simple Scorer

Writing $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$, take
score $(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$.
\boldsymbol{A} is a matrix of scores,
e.g., computed by a NN encoder.
the old man the boat
\boldsymbol{y}_{a} det adj noun det noun
\boldsymbol{y}_{b} det noun verb det noun
$\operatorname{score}\left(\boldsymbol{y}_{a}\right)=21$

Writing $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$, take $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$.
\boldsymbol{A} is a matrix of scores, e.g., computed by a NN encoder.
$\operatorname{score}\left(\boldsymbol{y}_{a}\right)=21$

Designing A Simple Scorer

```
Writing \boldsymbol{y}=(\mp@subsup{y}{1}{},\ldots,\mp@subsup{y}{n}{})\mathrm{ , take}
score(\boldsymbol{y})=\mp@subsup{\sum}{j}{}\mp@subsup{a}{j,\mp@subsup{y}{j}{}}{}.
A is a matrix of scores,
e.g., computed by a NN encoder.
\begin{tabular}{llllll} 
& the & old & man & the & boat \\
\(\boldsymbol{y}_{a}\) & det & adj & noun & det & noun \\
\(\boldsymbol{y}_{b}\) & det & noun & verb & det & noun
\end{tabular}
score( }\mp@subsup{\boldsymbol{y}}{\textrm{a}}{(})=2
score( (\mp@subsup{\boldsymbol{y}}{b}{})=
```

$\boldsymbol{A}=$| | det | noun | adj | verb |
| :---: | :---: | :---: | :---: | :---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |

Designing A Simple Scorer

```
Writing \boldsymbol{y}=(\mp@subsup{y}{1}{},\ldots,\mp@subsup{y}{n}{})\mathrm{ , take}
score(\boldsymbol{y})=\mp@subsup{\sum}{j}{}\mp@subsup{a}{j,\mp@subsup{y}{j}{}}{}.
A is a matrix of scores,
e.g., computed by a NN encoder.
\begin{tabular}{llllll} 
& the old & man & the & boat \\
\(\boldsymbol{y}_{a}\) & det & adj & noun & det & noun \\
\(\boldsymbol{y}_{b}\) & det & noun & verb & det & noun
\end{tabular}
score( }\mp@subsup{\boldsymbol{y}}{\textrm{a}}{(})=2
score(}\mp@subsup{\boldsymbol{y}}{b}{})=1
```

$\boldsymbol{A}=$| | det | noun | adj | verb |
| :---: | :---: | :---: | :---: | :---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |

Designing A Simple Scorer

A first attempt:
separate classifier for each position.

1. embed and encode x, eg, with a CNN.

$$
\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(z_{1}, \ldots, z_{n}\right)
$$

2. For each position j, apply a classification head with K outputs. E.g.,

$$
a_{j}=W^{\top} \boldsymbol{z}_{j}+\boldsymbol{b}
$$

Think of \boldsymbol{A} as a matrix with n rows and K columns, where $a_{j, c}$ is the score of assigning tag c at position j.
3. Writing $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$, take $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$.

```
words = [21, 79, 14] # indices
emb = Embedding(vocab_sz, dim)
clf = Linear(dim, n_tags)
# optionally add RNN, CNN, whatever
Z = emb(words) # (3 x dim)
A = clf(Z) # (3 x n_tags)
# computing the score of a given tag sequence:
y = [2, 0, 2]
y_score = sum(A[i, yi]
    for y, yi in enumerate(y))
# or, if you want to be fancy/fast:
y_score = A[torch.arange(len(y)), y].sum()
```


Finding The Best sequence

With our $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$, can we compute:

```
max score(y)
```

$\boldsymbol{A}=$| | det | noun | adj | verb |
| :---: | :---: | :---: | :---: | :---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |

Finding The Best sequence

With our $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$, can we compute:

```
max score(y)
=}\mp@subsup{\operatorname{max}}{\mp@subsup{y}{\mathbf{1}}{\prime}\in[K],\ldots,\mp@subsup{y}{n}{}\in[K]}{}\operatorname{score}([\mp@subsup{y}{1}{},\ldots,\mp@subsup{y}{n}{}]
```

$\boldsymbol{A}=$| | det | noun | adj | verb |
| :---: | :---: | :---: | :---: | :---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |

Finding The Best sequence

With our $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$, can we compute:

$$
\begin{aligned}
& \max _{\boldsymbol{y} \in \mathcal{Y}} \operatorname{score}(\boldsymbol{y}) \\
= & \max _{y_{\mathbf{1}} \in[K], \ldots, y_{n} \in[K]} \operatorname{score}\left(\left[y_{1}, \ldots, y_{n}\right]\right) \\
= & \max _{y_{\mathbf{1}} \in[K], \ldots, y_{n} \in[K]} \sum_{j} a_{j, y_{j}}
\end{aligned}
$$

$\boldsymbol{A}=$| | det | noun | adj | verb |
| :---: | :---: | :---: | :---: | :---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |

Finding The Best sequence

With our $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$, can we compute:

$$
\begin{aligned}
& \max _{\boldsymbol{y} \in \mathcal{Y}} \operatorname{score}(\boldsymbol{y}) \\
= & \max _{y_{\mathbf{1}} \in[K], \ldots, y_{n} \in[K]} \operatorname{score}\left(\left[y_{1}, \ldots, y_{n}\right]\right) \\
= & \max _{y_{\mathbf{1}} \in[K], \ldots, y_{n} \in[K]} \sum_{j} a_{j, y_{j}} \\
= & \sum_{j} \max _{y_{j} \in[K]} a_{j, y_{j}}
\end{aligned}
$$

Finding The Best sequence

With our $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$, can we compute:

$$
\begin{aligned}
& \max _{\boldsymbol{y} \in \mathcal{y}} \operatorname{score}(\boldsymbol{y}) \\
= & \max _{y_{\mathbf{1}} \in[K], \ldots, y_{n} \in[K]} \operatorname{score}\left(\left[y_{1}, \ldots, y_{n}\right]\right) \\
= & \max _{y_{\mathbf{1}} \in[K], \ldots, y_{n} \in[K]} \sum_{j} a_{j, y_{j}} \\
= & \sum_{j} \max _{y_{j} \in[K]} a_{j, y_{j}}
\end{aligned}
$$

$\boldsymbol{A}=$| | det | noun | adj | verb |
| :---: | :---: | :---: | :---: | :---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |

So, arg max $\boldsymbol{x}_{\boldsymbol{y}} \operatorname{score}(\boldsymbol{y})$ is made up of the tags selected independently at each position.

Normalizing Constant (log-sum-exp)

With our $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$, can we compute:

$$
\log \sum_{\boldsymbol{y} \in \mathcal{Y}} \exp (\operatorname{score}(\boldsymbol{y}))
$$

$\boldsymbol{A}=$| | det | noun | adj | verb |
| :---: | :---: | :---: | :---: | :---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |

Normalizing Constant (log-sum-exp)

With our $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$, can we compute:

$$
\begin{aligned}
& \log \sum_{\boldsymbol{y} \in \mathcal{Y}} \exp (\operatorname{score}(\boldsymbol{y})) \\
= & \log \sum_{y_{1}=1}^{K} \ldots \sum_{y_{n}=1}^{K} \exp \sum_{j=1}^{n} a_{j, y_{j}}
\end{aligned}
$$

$\boldsymbol{A}=$| | det | noun | adj | verb |
| :---: | :---: | :---: | :---: | :---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |

Normalizing Constant (log-sum-exp)

With our $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$, can we compute:

$$
\begin{aligned}
& \log \sum_{\boldsymbol{y} \in \mathcal{y}} \exp (\operatorname{score}(\boldsymbol{y})) \\
= & \log \sum_{y_{\mathbf{1}}=1}^{K} \ldots \sum_{y_{n}=1}^{K} \exp \sum_{j=1}^{n} a_{j, y_{j}} \\
= & \log \sum_{y_{1}=1}^{K} \ldots \sum_{y_{n}=1}^{K} \prod_{j=1}^{n} \exp a_{j, y_{j}}
\end{aligned}
$$

$\boldsymbol{A}=$| | det | noun | adj | verb |
| :---: | :---: | :---: | :---: | :---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |

Normalizing Constant (log-sum-exp)

With our $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$, can we compute:

$$
\begin{aligned}
& \log \sum_{\boldsymbol{y} \in \mathcal{y}} \exp (\operatorname{score}(\boldsymbol{y})) \\
= & \log \sum_{y_{1}=1}^{K} \ldots \sum_{y_{n}=1}^{K} \exp \sum_{j=1}^{n} a_{j, y_{j}} \\
= & \log \sum_{y_{1}=1}^{K} \cdots \sum_{y_{n}=1}^{K} \prod_{j=1}^{n} \exp a_{j, y_{j}} \\
= & \log \prod_{j=1}^{n} \sum_{y_{j}=1}^{K} \exp a_{j, y_{j}}
\end{aligned}
$$

Normalizing Constant (log-sum-exp)

With our $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$, can we compute:

$$
\begin{aligned}
& \log \sum_{\boldsymbol{y} \in \mathcal{y}} \exp (\operatorname{score}(\boldsymbol{y})) \\
= & \log \sum_{y_{1}=1}^{K} \ldots \sum_{y_{n}=1}^{K} \exp \sum_{j=1}^{n} a_{j, y_{j}} \\
= & \log \sum_{y_{1}=1}^{K} \cdots \sum_{y_{n}=1}^{K} \prod_{j=1}^{n} \exp a_{j, y_{j}} \\
= & \log \prod_{j=1}^{n} \sum_{y_{j}=1}^{K} \exp a_{j, y_{j}} \\
= & \sum_{j=1}^{n} \log \sum_{y_{j}=1}^{K} \exp a_{j, y_{j}}
\end{aligned}
$$

Normalizing Constant (log-sum-exp)

With our $\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}$, can we compute:

$$
\begin{aligned}
& \log \sum_{\boldsymbol{y} \in \mathcal{y}} \exp (\operatorname{score}(\boldsymbol{y})) \\
= & \log \sum_{y_{1}=1}^{K} \ldots \sum_{y_{n}=1}^{K} \exp \sum_{j=1}^{n} a_{j, y_{j}} \\
= & \log \sum_{y_{1}=1}^{K} \cdots \sum_{y_{n}=1}^{K} \prod_{j=1}^{n} \exp a_{j, y_{j}} \\
= & \log \prod_{j=1}^{n} \sum_{y_{j}=1}^{K} \exp a_{j, y_{j}} \\
= & \sum_{j=1}^{n} \log \sum_{y_{j}=1}^{K} \exp a_{j, y_{j}}
\end{aligned}
$$

$\boldsymbol{A}=$| the | 5 | 0 | 0 | 0 |
| ---: | :--- | :--- | :--- | :--- |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |

Probabilistic interpretation: independence

$$
\begin{aligned}
\log \operatorname{Pr}(\boldsymbol{y}) & =\operatorname{score}(\boldsymbol{y})-\log \sum_{\boldsymbol{y}^{\prime} \in \mathcal{Y}} \operatorname{expscore}\left(\boldsymbol{y}^{\prime}\right) \\
& =\sum_{j} \underbrace{\left(a_{j, y_{j}}-\log \sum_{k \in[K]} \exp a_{j, k}\right)}_{\log \operatorname{Pr}\left(y_{j}\right)}
\end{aligned}
$$

Fully-Local vs. Fully-Global

For sequence tagging, the separable (fully-local) score

$$
\operatorname{score}(\boldsymbol{y})=\sum_{j} a_{j, y_{j}}
$$

amounts to applying a probabilistic classifier to each of the n positions separately! (any "magic" comes from the feature represtntation / neural net encoder.)

Can we design a richer $\operatorname{score}(\boldsymbol{y})$ taking into account the sequential structure of \boldsymbol{y} ?

Fully-Local vs. Fully-Global

Entirely global model: like classification, where each possible sequence is a class.

```
            y score(y)
            det det det det det -1000
            det det det det noun -940
                det det det det verb -800
    det noun verb det noun 400
verb verb verb verb verb -1100
```

As expressive as possible: score is any function of the sequence.

Fully-Local vs. Fully-Global

Entirely global model: like classification, where each possible sequence is a class.

```
            y score(y)
        det det det det det -1000
        det det det det noun -940
        det det det det verb -800
    det noun verb det noun 400
verb verb verb verb verb -1100
```

As expressive as possible: score is any function of the sequence.
But completely intractable: $O\left(K^{n}\right)$ time and space.

Fully-Local vs. Fully-Global

Entirely global model: like classification, where each possible sequence is a class.

```
            y score(y)
        det det det det det -1000
        det det det det noun -940
        det det det det verb -800
    det noun verb det noun 400
verb verb verb verb verb -1100
```

As expressive as possible: score is any function of the sequence.
But completely intractable: $O\left(K^{n}\right)$ time and space.
Structure output prediction is about the space in between these two extremes.

Idea: scoring transitions between adjacent tags

$$
\operatorname{score}(\boldsymbol{y})=\sum_{j=1}^{n} a_{j, y_{j}}+\sum_{j=2}^{n} t_{y_{j-1}, y_{j}}
$$

For example, score([NOUN, DET, VERB] $)=+a_{2, \text { DET }} a_{1, \text { NOUN }}+a_{3, \text { VERB }}+t_{\text {NOUN,DET }}+t_{\text {DET,VERB }}$

Scoring Transitions Between Tags

A rich scorer that takes into account the sequential nature of \boldsymbol{y} while still allowing efficient computation:
scoring transitions between adjacent tags

$$
\operatorname{score}(\boldsymbol{y})=\sum_{j=1}^{n} a_{j, y_{j}}+\sum_{j=2}^{n} t_{y_{j-1}, y_{j}}
$$

For example, score $([$ NOUN, $\operatorname{DET}, \operatorname{VERB}])=a_{1, \text { NOUN }}+a_{2, \text { DET }}+a_{3, \text { VERB }}+t_{\text {NOUN,DET }}+t_{\text {DET,VERB }}$

Sequence Modeling With Transition Scores

$$
\operatorname{score}(\boldsymbol{y})=\sum_{j=1}^{n} a_{j, y_{j}}+\sum_{j=2}^{n} t_{y_{j-1}, y_{j}}
$$

The tag scores $A \in \mathbb{R}^{n \times K}$ can be computed as before (e.g., with a convnet.)
The transition scores $T \in \mathbb{R}^{K \times K}$:

- could be a learned parameter. (size does not depend on n)
- could be predicted by the neural net as a function of \boldsymbol{x}.

Unlike in the separable case, with transition scores, we no longer get n parallel classifiers: the different tags impact one another. (This makes the model more expressive and more interesting.)

Lecture 9

Sequence Tagging

Part 3: Sequence Tagging Algorithms

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Outline:

(1) Sequence Tagging

Definition and examples
Evaluation
(2) Different Scoring Models

A Simple Scoring Function
A Better Scoring Model
(3) Sequence Tagging Algorithms

Dynamic Programming For Sequence Tagging
Putting It All Together

Sequence Tagging As A DAG

$$
\operatorname{score}(\boldsymbol{y})=\sum_{j=1}^{n} a_{j, y_{j}}+\sum_{j=2}^{n} t_{y_{j-\mathbf{1}}, y_{j}}
$$

$G=(V, E, w)$ where:

$$
\begin{aligned}
V= & \{(j, c): j \in[n], c \in[K]\} \\
& \cup\{s, t\}
\end{aligned}
$$

$$
E=\left\{\left(j-1, c^{\prime}\right) \rightarrow(j, c): j \in[2, n], c, c^{\prime} \in[K]\right\}
$$

$$
\cup\{s \rightarrow(1, c): c \in[K]\}
$$

$$
\cup\{(n, c) \rightarrow t: c \in[K]\}
$$

$$
w\left(\left(j-1, c^{\prime}\right) \rightarrow(j, c)\right)=a_{j, c}+t_{c^{\prime}, c}
$$

$$
w(s \rightarrow(1, c))=a_{1, c}
$$

$$
w((n, c) \rightarrow t)=0
$$

$$
|V| \in \Theta(n K) ; \quad|E| \in \Theta\left(n K^{2}\right)
$$

Topological ordering?

Viterbi For Sequence Tagging

General Viterbi (reminder sketch)

$$
\begin{aligned}
& \text { initialize } m_{1} \leftarrow 0 \\
& \text { for } i=2, \ldots, n \text { do } \\
& \qquad m_{i} \leftarrow \max _{j \in P_{i}}\left(m_{j}+w(j i)\right) \\
& \qquad \pi_{i} \leftarrow \arg \max _{j \in P_{i}}\left(m_{j}+w(j i)\right)
\end{aligned}
$$

follow backpointers to get best path

Viterbi for sequence tagging
input: Unary scores $\boldsymbol{A}(n \times K$ array)
Transition scores $\boldsymbol{T}(K \times K$ array)
Forward: compute scores recursively

$$
\begin{aligned}
& m_{1 c}=a_{1 c} \quad \text { for all } c \in[K] \\
& \text { for } j=2 \text { to } n \text { do } \\
& \text { for } c=1 \text { to } K \text { do } \\
& \quad m_{j, c} \leftarrow \quad \max _{c^{\prime} \in[K]}\left(m_{j-1, c^{\prime}}+a_{j, c}+t_{c^{\prime}, c}\right) \\
& \pi_{j, c} \leftarrow \arg \max _{c^{\prime} \in[K]}\left(m_{j-1, c^{\prime}}+a_{j, c}+t_{c^{\prime}, c}\right) \\
& f^{\star}=\max _{c^{\prime} \in[K]} m_{n, c^{\prime}}
\end{aligned}
$$

Backward: follow backpointers

$$
\begin{aligned}
& y_{n}=\arg \max _{c^{\prime}} m_{n}\left(c^{\prime}\right) \\
& \text { for } j=n-1 \text { down to } 1 \text { do } \\
& y_{j}=\pi_{j+1, y_{j+1}}
\end{aligned}
$$

output: f^{\star} and $\boldsymbol{y}^{\star}=\left[y_{1}, \ldots, y_{n}\right]$

Viterbi For Sequence Tagging: Example

$m_{j, c}$ is stored as a matrix \boldsymbol{M}, same shape as \boldsymbol{A}.
Apply $m_{1, c}=a_{1, c}$ to get the first row: (copied from \boldsymbol{A})
Then iteratively: $m_{j, c}=\max _{c^{\prime} \in[K]} m_{j-1, c^{\prime}}+a_{j, c}+t_{c^{\prime}, c}$
At the end, take the maximum over the last row.

$\boldsymbol{M}=$ old | the noun adj verb |
| :--- |
| man |
| the |
| boat |

unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

Viterbi For Sequence Tagging: Example

$m_{j, c}$ is stored as a matrix \boldsymbol{M}, same shape as \boldsymbol{A}.
Apply $m_{1, c}=a_{1, c}$ to get the first row: (copied from \boldsymbol{A})
Then iteratively: $m_{j, c}=\max _{c^{\prime} \in[K]} m_{j-1, c^{\prime}}+a_{j, c}+t_{c^{\prime}, c}$
At the end, take the maximum over the last row.

$\boldsymbol{M}=$| det noun adj verb | | | | |
| :---: | :---: | :---: | :---: | :---: |
| the | 5 | 0 | 0 | 0 |
| old | | | | |
| man | | | | |
| the | | | | |
| boat | | | | |

unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

Viterbi For Sequence Tagging: Example

$m_{j, c}$ is stored as a matrix \boldsymbol{M}, same shape as \boldsymbol{A}.
Apply $m_{1, c}=a_{1, c}$ to get the first row: (copied from \boldsymbol{A})
Then iteratively: $m_{j, c}=\max _{c^{\prime} \in[K]} m_{j-1, c^{\prime}}+a_{j, c}+t_{c^{\prime}, c}$
At the end, take the maximum over the last row.

unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

Viterbi For Sequence Tagging: Example

$m_{j, c}$ is stored as a matrix \boldsymbol{M}, same shape as \boldsymbol{A}.
Apply $m_{1, c}=a_{1, c}$ to get the first row: (copied from \boldsymbol{A})
Then iteratively: $m_{j, c}=\max _{c^{\prime} \in[K]} m_{j-1, c^{\prime}}+a_{j, c}+t_{c^{\prime}, c}$
At the end, take the maximum over the last row.
unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

Viterbi For Sequence Tagging: Example

$m_{j, c}$ is stored as a matrix \boldsymbol{M}, same shape as \boldsymbol{A}.
Apply $m_{1, c}=a_{1, c}$ to get the first row: (copied from \boldsymbol{A})
Then iteratively: $m_{j, c}=\max _{c^{\prime} \in[K]} m_{j-1, c^{\prime}}+a_{j, c}+t_{c^{\prime}, c}$
At the end, take the maximum over the last row.

unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

Viterbi For Sequence Tagging: Example

$m_{j, c}$ is stored as a matrix \boldsymbol{M}, same shape as \boldsymbol{A}.
Apply $m_{1, c}=a_{1, c}$ to get the first row: (copied from \boldsymbol{A})
Then iteratively: $m_{j, c}=\max _{c^{\prime} \in[K]} m_{j-1, c^{\prime}}+a_{j, c}+t_{c^{\prime}, c}$
At the end, take the maximum over the last row.
unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

Viterbi For Sequence Tagging: Example

$m_{j, c}$ is stored as a matrix \boldsymbol{M}, same shape as \boldsymbol{A}.
Apply $m_{1, c}=a_{1, c}$ to get the first row: (copied from \boldsymbol{A})
Then iteratively: $m_{j, c}=\max _{c^{\prime} \in[K]} m_{j-1, c^{\prime}}+a_{j, c}+t_{c^{\prime}, c}$
At the end, take the maximum over the last row.

$\boldsymbol{M}=$| | det | noun | adj | verb |
| :---: | :---: | :---: | :---: | :---: |
| the | 5 | 0 | 0 | 0 |
| old | 1 | 9 | 10 | 4 |
| man | | | | |
| the | | | | |
| boat | | | | |

unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

Viterbi For Sequence Tagging: Example

$m_{j, c}$ is stored as a matrix \boldsymbol{M}, same shape as \boldsymbol{A}.
Apply $m_{1, c}=a_{1, c}$ to get the first row: (copied from \boldsymbol{A})
Then iteratively: $m_{j, c}=\max _{c^{\prime} \in[K]} m_{j-1, c^{\prime}}+a_{j, c}+t_{c^{\prime}, c}$
At the end, take the maximum over the last row.

$$
\mathbf{M}=\begin{array}{ccccc}
& \text { det } & \text { noun } & \text { adj } & \text { verb } \\
\text { the } & 5 & 0 & 0 & 0 \\
\text { old } & 1 & 9 & 10 & 4 \\
\text { man } & 8 & 15 & 11 & 12 \\
\text { the } & 18 & 13 & 14 & 17 \\
\text { boat } & 18 & 26 & 20 & 17
\end{array}
$$

unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

Viterbi For Sequence Tagging: Example

$m_{j, c}$ is stored as a matrix \boldsymbol{M}, same shape as \boldsymbol{A}.
Apply $m_{1, c}=a_{1, c}$ to get the first row: (copied from \boldsymbol{A})
Then iteratively: $m_{j, c}=\max _{c^{\prime} \in[K]} m_{j-1, c^{\prime}}+a_{j, c}+t_{c^{\prime}, c}$
At the end, take the maximum over the last row.

$\mathbf{M}=$| | det | noun | adj | verb |
| :---: | :---: | :---: | :---: | :---: |
| the | 5 | 0 | 0 | 0 |
| old | 1 | 9 | 10 | 4 |
| man | 8 | 15 | 11 | 12 |
| the | 18 | 13 | 14 | 17 |
| boat | 18 | 26 | 20 | 17 |

To find the best tag sequence \boldsymbol{y}^{\star}, keep track of the path.
unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

Viterbi For Sequence Tagging: Example

$m_{j, c}$ is stored as a matrix \boldsymbol{M}, same shape as \boldsymbol{A}.
Apply $m_{1, c}=a_{1, c}$ to get the first row: (copied from \boldsymbol{A})
Then iteratively: $m_{j, c}=\max _{c^{\prime} \in[K]} m_{j-1, c^{\prime}}+a_{j, c}+t_{c^{\prime}, c}$
At the end, take the maximum over the last row.

$$
\mathbf{M}=\begin{array}{ccccc}
& \begin{array}{c}
\text { det } \\
\text { the } \\
\text { old }
\end{array} & 5 & 1 & 0 \\
\text { man } & 8 & 15 & 10 & 0 \\
\text { man } & 10 & 4 \\
\text { the } & 18 & 13 & 14 & 17 \\
\text { boat } & 18 & 26 & 20 & 17
\end{array}
$$

To find the best tag sequence \boldsymbol{y}^{\star}, keep track of the path.
unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

The Two Main Recurrences Of Sequence Tagging:

(Dynamic programming applied to the sequence tagging DAG)

$$
\begin{aligned}
& m_{j, c}=\max _{c^{\prime} \in[K]}\left(m_{j-1, c^{\prime}}+a_{j c}+t_{c^{\prime} c}\right), \\
& q_{j, c}=\log \sum_{c^{\prime} \in[K]} \exp \left(q_{j-1, c^{\prime}}+a_{j c}+t_{c^{\prime} c}\right) .
\end{aligned}
$$

The Forward Algorithm

Forward algorithm for sequence tagging

input: Unary scores \boldsymbol{A} ($n \times K$ array)
Transition scores \boldsymbol{T} ($K \times K$ array)
Forward: compute scores recursively

```
q1,c}=\mp@subsup{a}{1,c}{}\quad\mathrm{ for all ce[K]
for }j=2\mathrm{ to }n\mathrm{ do
    for c=1 to K do
        qj,c}=\operatorname{log}\mp@subsup{\sum}{\mp@subsup{c}{}{\prime}\in[K]}{}\operatorname{exp}(\mp@subsup{q}{j-1,\mp@subsup{c}{}{\prime}}{}+\mp@subsup{a}{j,c}{}+\mp@subsup{t}{\mp@subsup{c}{}{\prime},c}{}
return }\operatorname{log}Z=\operatorname{log}\mp@subsup{\sum}{\mp@subsup{c}{}{\prime}\in[K]}{}\operatorname{exp}(\mp@subsup{q}{n,\mp@subsup{c}{}{\prime}}{}
```

	the	old	man	the	boat	
\boldsymbol{y}_{a}	det	adj	noun	det	noun	$\operatorname{score}\left(\boldsymbol{y}_{a}\right)=25$
\boldsymbol{y}_{b}	det	noun	verb	det	noun	$\operatorname{score}\left(\boldsymbol{y}_{b}\right)=26$
\boldsymbol{y}_{c}	noun	noun	noun	noun	noun	$\operatorname{score}\left(\boldsymbol{y}_{c}\right)=1$

Applying the Forward algorithm yields

$$
\boldsymbol{Q}=\begin{array}{rrrrr}
& \text { det } & \text { noun } & \text { adj } & \text { verb } \\
\text { the } & 5.00 & 0.00 & 0.00 & 0.00 \\
\text { old } & 1.73 & 9.00 & 10.00 & 4.19 \\
\text { man } & 8.18 & 15.01 & 11.05 & 12.70 \\
\text { the } & 18.88 & 13.92 & 14.37 & 17.03 \\
\text { boat } & 18.08 & 26.88 & 20.90 & 18.38
\end{array}
$$

unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

	the	old	man	the	boat	
\boldsymbol{y}_{a}	det	adj	noun	det	noun	$\operatorname{score}\left(\boldsymbol{y}_{a}\right)=25$
\boldsymbol{y}_{b}	det	noun	verb	det	noun	$\operatorname{score}\left(\boldsymbol{y}_{b}\right)=26$
\boldsymbol{y}_{c}	noun	noun	noun	noun	noun	$\operatorname{score}\left(\boldsymbol{y}_{c}\right)=1$

Applying the Forward algorithm yields
unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

	the	old	man	the	boat	
\boldsymbol{y}_{a}	det	adj	noun	det	noun	$\operatorname{score}\left(\boldsymbol{y}_{a}\right)=25$
\boldsymbol{y}_{b}	det	noun	verb	det	noun	$\operatorname{score}\left(\boldsymbol{y}_{b}\right)=26$
\boldsymbol{y}_{c}	noun	noun	noun	noun	noun	$\operatorname{score}\left(\boldsymbol{y}_{c}\right)=1$

unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

$$
\log P\left(\boldsymbol{y}_{a}\right)=\operatorname{score}\left(\boldsymbol{y}_{a}\right)-\log Z=25-26.885=-1.885
$$

	the	old	man	the	boat	
\boldsymbol{y}_{a}	det	adj	noun	det	noun	$\operatorname{score}\left(\boldsymbol{y}_{a}\right)=25$
\boldsymbol{y}_{b}	det	noun	verb	det	noun	$\operatorname{score}\left(\boldsymbol{y}_{b}\right)=26$
\boldsymbol{y}_{c}	noun	noun	noun	noun	noun	$\operatorname{score}\left(\boldsymbol{y}_{c}\right)=1$

unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

$$
\begin{aligned}
& \log P\left(\boldsymbol{y}_{a}\right)=\operatorname{score}\left(\boldsymbol{y}_{a}\right)-\log Z=25-26.885=-1.885 \\
& \log P\left(\boldsymbol{y}_{b}\right)=\operatorname{score}\left(\boldsymbol{y}_{b}\right)-\log Z=26-26.885=-0.885
\end{aligned}
$$

	the	old	man	the	boat	
\boldsymbol{y}_{a}	det	adj	noun	det	noun	$\operatorname{score}\left(\boldsymbol{y}_{a}\right)=25$
\boldsymbol{y}_{b}	det	noun	verb	det	noun	$\operatorname{score}\left(\boldsymbol{y}_{b}\right)=26$
\boldsymbol{y}_{c}	noun	noun	noun	noun	noun	$\operatorname{score}\left(\boldsymbol{y}_{c}\right)=1$

unary and transition scores:

$\boldsymbol{A}=$| | det | noun | adj | verb |
| ---: | ---: | ---: | ---: | ---: |
| the | 5 | 0 | 0 | 0 |
| old | 0 | 1 | 3 | 0 |
| man | 0 | 3 | 0 | 1 |
| the | 5 | 0 | 0 | 0 |
| boat | 0 | 5 | 0 | 0 |
| | | | | |
| | det | noun | adj | verb |
| det | -4 | 3 | 2 | -1 |
| noun | -3 | -2 | -1 | 2 |
| adj | -2 | 2 | 1 | 1 |
| verb | 1 | -1 | 0 | 0 |

$$
\begin{aligned}
\log P\left(\boldsymbol{y}_{a}\right)=\operatorname{score}\left(\boldsymbol{y}_{a}\right)-\log Z=25-26.885 & =-1.885 \\
\log P\left(\boldsymbol{y}_{b}\right)=\operatorname{score}\left(\boldsymbol{y}_{b}\right)-\log Z=26-26.885 & =-0.885 \\
\log P\left(\boldsymbol{y}_{c}\right)=\operatorname{score}\left(\boldsymbol{y}_{c}\right)-\log Z=1-26.885 & =-25.885
\end{aligned}
$$

Putting It All Together

At this point, we have all the ingredients needed to train a probabilistic sequence tagger with transition scores!

1. Receiving an input sequence x, the model returns unary and transition scores \boldsymbol{A} and \boldsymbol{T}.
2. If we're at test time:
run Viterbi to get predicted sequence; compute accuracies etc.
3. If training time:
run Forward algorithm to compute the training objective
$-\log P(\boldsymbol{y} \mid \boldsymbol{x})=-\operatorname{score}(\boldsymbol{y})+\log \sum_{\boldsymbol{y}^{\prime} \in \boldsymbol{y}} \exp \operatorname{score}\left(\boldsymbol{y}^{\prime}\right)$.
This probabilistic model is often known as a Linear-Chain Conditional Random Field.
(Historically, Linear-Chain CRFs didn't use neural net scorers, but the math doesn't change. Today I prefer to teach it this way.)
