
Machine Learning for Structured DataVlad Niculae · LTL, UvA · https://vene.ro/mlsd

Sequence Tagging

Part 1: Sequence Tagging

Lecture 9

https://vene.ro/mlsd


Outline:

1 Sequence Tagging

Definition and examples
2 Different Scoring Models

A Simple Scoring Function
A Better Scoring Model

3 Sequence Tagging Algorithms

Dynamic Programming For Sequence Tagging
Putting It All Together
Evaluation

2/∞



Sequence Tagging

Given a sequence of n items x = (x1, . . . , xn), assign to each of them one of K tags:
y = (y1, . . . , yn) where each yi ∈ {1, . . . ,K }.
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Given a sequence of n items x = (x1, . . . , xn), assign to each of them one of K tags:
y = (y1, . . . , yn) where each yi ∈ {1, . . . ,K }.

Example 1: Part-of-speech (POS) tagging in NLP
the old man the boat

y a det adj noun det noun
yb det noun verb det noun
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Sequence Tagging

Given a sequence of n items x = (x1, . . . , xn), assign to each of them one of K tags:
y = (y1, . . . , yn) where each yi ∈ {1, . . . ,K }.

Example 2: Frame-level phone(me) classification (may be part of speech recognition)
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the old man's eyes remained fixed on the door
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Sequence Tagging

Given a sequence of n items x = (x1, . . . , xn), assign to each of them one of K tags:
y = (y1, . . . , yn) where each yi ∈ {1, . . . ,K }.

Example 3: Optical character recognition

8 2 4 0 8 2
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Characterizing The Output Space
Given a sequence of n items x = (x1, . . . , xn), assign to each of them one of K tags:

y = (y1, . . . , yn) where each yi ∈ {1, . . . ,K }.

Input x = (x1, . . . , xn), e.g., a sequence of words.
Output y = (y1, . . . , yn), e.g., a sequence of part-of-speech tags.
For each data point (sentence), |y | = |x |; different data points have different lengths.

For fixed length n, some possible outputs:
• (1, 1, . . . , 1, 1) ∈ Y
• (1, 1, . . . , 1, 2) ∈ Y
• (K ,K , . . . ,K ,K ) ∈ Y

How many in terms of n?
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Part-Of-Speech Tags

Source: (Jurafsky and Martin, 2024), Speech and Language Processing. https://web.stanford.edu/~jurafsky/slp3/8.pdf ©Jurafsky and Martin
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Designing A Simple Scorer

Writing y = (y1, . . . , yn), take
score(y ) = ∑

j aj,yj .

A is a matrix of scores,e.g., computed by a NN encoder.

the old man the boat
y a det adj noun det noun
yb det noun verb det noun

score(y a) =

21

score(yb) =

17

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

8/∞
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Designing A Simple Scorer

A first attempt:separate classifier for each position.
1. embed and encode x , eg, with a CNN.

(x1, . . . , xn) → (z1, . . . , zn)

2. For each position j , apply aclassification head with K outputs. E.g.,
aj = W⊤z j + b

Think of A as a matrix with n rows and
K columns, where aj,c is the score ofassigning tag c at position j .

3. Writing y = (y1, . . . , yn),take score(y ) = ∑
j aj,yj .

words = [21, 79, 14] # indices
emb = Embedding(vocab_sz, dim)
clf = Linear(dim, n_tags)

# optionally add RNN, CNN, whatever

Z = emb(words) # (3 × dim)
A = clf(Z) # (3 × n_tags)

# computing the score of a given tag sequence:
y = [2, 0, 2]

y_score = sum(A[i, yi]
for i, yi in enumerate(y))

# or, if you want to be fancy/fast:
y_score = A[torch.arange(len(y)), y].sum()
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Finding The Best sequence

With our score(y ) = ∑
j aj,yj , can we compute:

max
y ∈Y

score(y )

= max
y1∈[K ],...,yn∈[K ]

score ( [y1, . . . , yn])

= max
y1∈[K ],...,yn∈[K ]

∑
j

aj,yj

=
∑
j

max
yj ∈[K ]

aj,yj

So, argmaxy score(y ) is made up of the tagsselected independently at each position.

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =
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Normalizing Constant (log-sum-exp)
With our score(y ) = ∑

j aj,yj , can we compute:

log
∑
y ∈Y

exp (score(y ))

= log
K∑

y1=1

. . .

K∑
yn=1

exp
n∑
j=1

aj,yj

= log
K∑

y1=1

. . .

K∑
yn=1

n∏
j=1

exp aj,yj

= log
n∏
j=1

K∑
yj=1

exp aj,yj

=
n∑
j=1

log
K∑

yj=1

exp aj,yj

det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

Probabilistic interpretation: independence

log Pr(y ) = score(y ) − log
∑

y ′∈Y
exp score(y ′)

=
∑
j

©­«aj,yj − log
∑

k∈[K ]
exp aj,k

ª®¬︸                              ︷︷                              ︸
log Pr(yj )
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Fully-Local vs. Fully-Global

For sequence tagging, the separable (fully-local) score
score(y ) =

∑
j

aj,yj

amounts to applying a probabilistic classifier to each of the n positions separately!(any “magic” comes from the feature representation / neural net encoder.)
Can we design a richer score(y ) taking into account the sequential structure of y?

12/∞



Fully-Local vs. Fully-Global
Entirely global model: like classification, where each possible sequence is a class.

y score(y )
det det det det det −1000
det det det det noun −940
det det det det verb −800

. . .

det noun verb det noun 400
. . .

verb verb verb verb verb −1100

As expressive as possible: score is any function of the sequence.

But completely intractable: O (Kn) time and space.
Structure output prediction is about the space in between these two extremes.
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Scoring Transitions Between Tags

A rich scorer that takes into account the sequential nature of y while still allowingefficient computation:
scoring transitions between adjacent tags

score(y ) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj

For example, score([NOUN, DET, VERB]) = a1,NOUN + a2,DET + a3,VERB + tNOUN,DET + tDET,VERB

14/∞



Sequence Modeling With Transition Scores

score(y ) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj

The tag scores A ∈ Òn×K can be computed as before (e.g., with a convnet.)
The transition scores T ∈ ÒK×K :
• could be a learned parameter. (size does not depend on n)
• could be predicted by the neural net as a function of x .

Unlike in the separable case, with transition scores, we no longer get n parallelclassifiers: the different tags impact one another. (This makes the model moreexpressive and more interesting.)
15/∞
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Sequence Tagging As A DAG

score(y ) =
n∑
j=1

aj,yj +
n∑
j=2

tyj−1,yj

the old man the boat

det

noun

adj

verb

G = (V ,E ,w ) where:
V ={(j, c): j ∈ [n], c ∈ [K ]}
∪ {s, t}

E ={(j − 1, c ′) → (j, c): j ∈ [2, n], c, c ′ ∈ [K ]}
∪ {s → (1, c): c ∈ [K ]}
∪ {(n, c) → t: c ∈ [K ]}

w
(
(j − 1, c ′) → (j, c)

)
= aj,c + tc ′,c

w (s → (1, c)) = a1,c

w ((n, c) → t) = 0

|V | ∈ Θ(nK ); |E | ∈ Θ(nK2)

Topological ordering?
18/∞



Viterbi For Sequence Tagging

the old man the boat

det

noun

adj

verb

General Viterbi (reminder sketch)

initialize m1 ← 0
for i = 2, . . . , n do

mi ← max
j∈Pi

(
mj + w (ji)

)
πi ← argmax

j∈Pi

(
mj + w (ji)

)
follow backpointers to get best path

Viterbi for sequence tagging

input: Unary scores A (n × K array)Transition scores T (K × K array)
Forward: compute scores recursively
m1c = a1c for all c ∈ [K ]
for j = 2 to n do
for c = 1 to K do
mj,c ← maxc ′∈[K ]

(
mj−1,c ′ + aj,c + tc ′,c

)
πj,c ← argmaxc ′∈[K ]

(
mj−1,c ′ + aj,c + tc ′,c

)
f ⋆ = maxc ′∈[K ] mn,c ′

Backward: follow backpointers
yn = argmaxc ′ mn (c ′)
for j = n − 1 down to 1 do
yj = πj+1,yj+1

output: f ⋆ and y⋆ = [y1, . . . , yn] 19/∞



Viterbi For Sequence Tagging: Example

mj,c is stored as a matrix M , same shape as A.
Apply m1,c = a1,c to get the first row: (copied from A)
Then iteratively: mj,c = maxc ′∈[K ] mj−1,c ′ + aj,c + tc ′,c

At the end, take the maximum over the last row.
det noun adj verb

the
oldman
the

boat

M =

To find the best tag sequence y⋆, keep track of the path.

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0
boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =

20/∞
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The Two Main Recurrences Of Sequence Tagging:

(Dynamic programming applied to the sequence tagging DAG)

mj,c = max
c ′∈[K ]

(
mj−1,c ′ + ajc + tc ′c

)
,

qj,c = log
∑

c ′∈[K ]
exp

(
qj−1,c ′ + ajc + tc ′c

)
.
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The Forward Algorithm

Forward algorithm for sequence tagging
input: Unary scores A (n × K array)Transition scores T (K × K array)
Forward: compute scores recursively
q1,c = a1,c for all c ∈ [K ]
for j = 2 to n do

for c = 1 to K do
qj,c = log

∑
c ′∈[K ] exp

(
qj−1,c ′ + aj,c + tc ′,c

)
return logZ = log

∑
c ′∈[K ] exp

(
qn,c ′

)
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the old man the boat
ya det adj noun det noun score(ya) = 25
yb det noun verb det noun score(yb) = 26
yc noun noun noun noun noun score(yc ) = 1

Applying the Forward algorithm yields
det noun adj verb

the 5.00 0.00 0.00 0.00
old 1.73 9.00 10.00 4.19
man 8.18 15.01 11.05 12.70
the 18.88 13.92 14.37 17.03

boat 18.08 26.88 20.90 18.38

Q =

logZ ≈ 26.885

logP (ya) = score(ya) − logZ = 25 − 26.885 = −1.885

logP (yb) = score(yb) − logZ = 26 − 26.885 = −0.885

logP (yc ) = score(yc ) − logZ = 1 − 26.885 = −25.885

unary and transition scores:
det noun adj verb

the 5 0 0 0
old 0 1 3 0
man 0 3 0 1
the 5 0 0 0

boat 0 5 0 0

A =

det noun adj verb

det −4 3 2 −1
noun −3 −2 −1 2
adj −2 2 1 1

verb 1 −1 0 0

T =
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Putting It All Together

At this point, we have all the ingredients needed to train a probabilistic sequencetagger with transition scores!
1. Receiving an input sequence x , the model returns unary and transition scores

A and T .
2. If we’re at test time:run Viterbi to get predicted sequence; compute accuracies etc.
3. If training time:run Forward algorithm to compute the training objective
− logP (y | x) = − score(y ) + log∑y ′∈Y exp score(y ′).
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Evaluation (Jurafsky and Martin, 2024, Sec. 4.7)

Well, what would we do in theunstructured case? Notation: Iverson Bracket

⟦p⟧ =
{
1, p is true,
0, otherwise.

• Accuracy:
What fraction of test cases are correctly classified?

Acc = 1
N

N∑
i=1

⟦y (i ) = ŷ (i )⟧
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Structured evaluation: POS tagging
For sequential data, accuracy already becomes more complicated:
sequence-level?

Accseq =

∑N
i=1⟦y

(i ) = ŷ (i )⟧
Nor (micro-averaged) tag accuracy? (writing n (i ) = |y (i ) |):

Acctag =

∑N
i=1

∑n (i )
j=1⟦y

(i )
j

= ŷ
(i )
j
⟧∑N

i=1 n
(i )

(could also imagine a macro-averaged version, but it’s not meaningful here)
Example:
true: PRO VERB NUM NOUN ADV
pred: PRO VERB NUM NOUN PRO
words: there are 70 children there
true: INTJ
pred: X
words: eeeeek

Accseq =
0
2
= 0

Acctag = 4
6
= 0.667

26/∞



Historical Notes And References

• This probabilistic model is often known as a Linear-Chain Conditional RandomField and due to Lafferty et al. (2001). (Historically, Linear-Chain CRFs didn’tuse neural net scorers, but the math doesn’t change. I prefer to teach it in amore general way.)
• On POS tagging: (Jurafsky and Martin, 2024) Speech and Language Processing[link]
• Structured prediction: (Daumé III, 2012), A Course In Machine Learning, ch. 17[link]
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https://web.stanford.edu/~jurafsky/slp3/8.pdf
http://ciml.info/dl/v0_99/ciml-v0_99-ch17.pdf
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