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Computations For Structures
Recall: Structured outputs are:

• discrete objects

• made of smaller parts

• which interact with each other and/or constrain each other,

and we must know how to compute:

• score(y )

• for prediction: argmaxy ∈Y score(y )

• for learning: log
∑

y ∈Y exp (score(y ))

For large problems, we can’t enumerate Y (could be exponentially large).

So, we must actually make use of its structure.
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Recap: Graphs

Definition 1: Weighted directed graph
A weighted directed graph is G = (V ,E ,w ) where:
• V is the set of vertices (nodes) of G .
• E ⊂ V × V is the set of arcs of G :

uv ∈ E means there is an arc from node u ∈ V to node v ∈ V
(u , v ).
Arcs are ordered pairs, so uv , vu.

• w : E → Ò is a weight function assigning a weight to each edge.

Definition 2: Paths
A path A in G is a sequence of edges: A = e1e2 . . . ek , with each ei ∈ E ,
two-by-two “linked”, i.e., if ei = uivi and ei+1 = ui+1vi+1
then we must have vi = ui+1.

The weight of a path is the sum of arc weights: w (A) = ∑
e∈P w (e).

We denote path concatenation by A⌢1 A2 (when legal).
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Directed Acyclic Graphs

Definition 3: Cycle
A cycle is a path e1e2 . . . ek wherein the last edge ek points to the node
from which the first edge e1 departs.

Definition 4. Directed acyclic graph (DAG)
A DAG is a directed graph that contains no cycles.

Definition 4. Topological ordering
A topological ordering of a directed graph G = (V ,E ) is an ordering of
its nodes v1, v2, . . . , vn such that if vivj ∈ E then i < j .

G is a DAG if and only if G admits a topological ordering.
Rough intuition: “backward” edges against the ordering ⇐⇒ cycles.
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Paths In DAGs

Label nodes in topological order V = {1, . . . , n}.

Let Yi be the set of paths starting at 1 and ending at i .

Let’s assume our space of structures is Y = Yn.

Important things to compute:

• score(y ) = w (y )

• argmaxy ∈Yn w (y )

• log
∑

y ∈Yn expw (y )

Later, I’ll show you some structured problems that can be
usefully reduced to paths in a DAG, and some that cannot.
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Max-Scoring Path

• The greedy path from 1 to 5
might not be best.
• From Data Structures and Algorithms you
might recall Dijkstra’s algorithm.
• Requires no “negative cycles” — always true
for DAGs.

• Complexity: Θ( |V | log |V | + |E |) with
“Fibonacci heaps”; Θ( |V |2) with a
straightforward implementation. .

• In the case of DAGs, we can do better.
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Dynamic Programming Recurrence
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Goal: the max weight of a path from 1 to i :

mi = max
y ∈Yi

w (y ).

Define predecessors of i as Pi := {j ∈ V : ji ∈ E }.

Insight 1.
Any path from to i is an extension of some path
to predecessor j ∈ Pi by arc ji .

In other words: if y ∈ Yi then y = y ′⌢ji for some
j ∈ Pi and some y ′ ∈ Yj .

Proposition: DP recurrence for max
For any i > 1, the best path from 1 to i
is the best among the extensions of
the best path to the predecessors of i :

mi = max
j∈Pi

(
mj + w (ji)

)
Proof: mi := max

y ∈Yi
w (y )

= max
j∈Pi

max
y ′∈Yj

(w (y ′) + w (ji))

= max
j∈Pi

(
max
y ′∈Yj
(w (y ′)) + w (ji)

)
= max

j∈Pi

(
mj + w (ji)

)
.
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The Viterbi Algorithm
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mi = maxj∈Pi

(
mj + w (ji)

)
holds for any graph;

but we would chase our own tail forever.

Insight 2.
In a topologically-ordered DAG, any path from
1 to i must only contain nodes j < i .

(So, we may compute m1, . . . ,mn in order.)

Insight 3.
A path acheiving maximal weight is made up of
the edges j⋆i , where j⋆ is the node selected by
the max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
G = (V ,E ,w ),V = {1, . . . , n}
output: maximum path weights m1, . . . ,mn.

initialize m1 ← 0
for i = 2, . . . , n do

mi ← max
j∈Pi

(
mj + w (ji)

)

πi ← argmax
j∈Pi

(
mj + w (ji)

)
Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
y = []; i ← n
while i > 1 do

y ← πi i
⌢y

i ← πi

Complexity: Θ( |V | + |E |).
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Probability Distributions
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A weighted DAG induces a probability distributions
over all paths from 1 to n:

Pr(y ) = exp(w (y ))∑
y ′∈Yn exp(w (y ′))

y w (y ) exp(w (y )) Pr(y )

1→ 2→ 5

10 + 20 = 30 1.1 · 1013 .9930

1→ 2→ 4→ 5

10 − 5 + 10 = 15 3.3 · 106 .0001

1→ 3→ 4→ 5

15 + 0 + 10 = 25 7.2 · 1010 .0069

To assess Pr(y ) even for a single path, the
denominator sums over all paths.

Next goal: calculate this denominator efficiently.
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7.2 · 1010 .0069

To assess Pr(y ) even for a single path, the
denominator sums over all paths.

Next goal: calculate this denominator efficiently.

14/∞



Probability Distributions

1

2

3

4 5

10

15

-5

0

20

10

A weighted DAG induces a probability distributions
over all paths from 1 to n:

Pr(y ) = exp(w (y ))∑
y ′∈Yn exp(w (y ′))

y w (y ) exp(w (y )) Pr(y )

1→ 2→ 5 10 + 20 = 30 1.1 · 1013

.9930

1→ 2→ 4→ 5 10 − 5 + 10 = 15 3.3 · 106

.0001

1→ 3→ 4→ 5 15 + 0 + 10 = 25 7.2 · 1010

.0069

To assess Pr(y ) even for a single path, the
denominator sums over all paths.

Next goal: calculate this denominator efficiently.

14/∞



Probability Distributions

1

2

3

4 5

10

15

-5

0

20

10

A weighted DAG induces a probability distributions
over all paths from 1 to n:

Pr(y ) = exp(w (y ))∑
y ′∈Yn exp(w (y ′))

y w (y ) exp(w (y )) Pr(y )

1→ 2→ 5 10 + 20 = 30 1.1 · 1013 .9930
1→ 2→ 4→ 5 10 − 5 + 10 = 15 3.3 · 106 .0001
1→ 3→ 4→ 5 15 + 0 + 10 = 25 7.2 · 1010 .0069

To assess Pr(y ) even for a single path, the
denominator sums over all paths.

Next goal: calculate this denominator efficiently.

14/∞



Log-Probability DP Recurrence
Since expw (y ) can be huge, it’s better to work
with log-probabilities:

log Pr(y ) = w (y ) − log
∑

y ′∈Yn
expw (y ′)

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).
If y ∈ Yi then y = y ′⌢ji for some j ∈ Pi
and some y ′ ∈ Yj .

Insight 4: addition distributes over log-sum-exp.

c + log
∑
i

exp(zi ) = log
∑
i

exp(c + zi )

Denote qi := log
∑
y ∈Yi exp(w (y )).

Proposition: DP recurrence for log-sum-exp.

qi = log
∑
j∈Pi

exp
(
qj + w (ji)

)
Compare with the DP recurrence for max:

mi = max
j∈Pi

(mj + w (ji)).

Proof: qi = log
∑
j∈Pi

∑
y ′∈Yj

exp
(
w (y ′) + w (ji)

)

= log
∑
j∈Pi

exp
©­«log

∑
y ′∈Yj

exp(w (y ′)) + w (ji)ª®¬
= log

∑
j∈Pi

exp
(
qj + w (ji)

)
.
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The Forward Algorithm
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General forward algorithm for DAGs

input: Topologically-ordered DAG
G = (V ,E ,w ),V = {1, . . . , n}
output: qn := log

∑
y ∈Yn expw (y ).

initialize q1 ← 0
for i = 2, . . . , n do

qi ← log
∑
j∈Pi

exp
(
qj + w (ji)

)
Complexity: Θ( |V | + |E |).

Lets us calculate the log-probability of any
given sequence log Pr(y ).

Can use autodiff to get +w log Pr(y ).
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Spot A Pattern?

Why are these two algorithms so similar?

Deriving the DP recurrences was almost identical.

The pattern:

• x ⊕ y = max(x, y ); x ⊗ y = x + y form a semiring over Ò ∪ {−∞}.

• x ⊕ y = log(ex + ey ); x ⊗ y = x + y form a semiring over Ò ∪ {−∞}.

This is a very productive generalization that leads to other algorithms too:

• the boolean semiring x ⊕ y = x ∨ y , x ⊗ y = x ∧ y over {0, 1}
yields an algorithm for path existence;

• there is a semiring that leads to top-k paths.
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Sampling Paths

Bonus goal: draw samples from the distribution over paths: y1, . . . , yk ∼ Pr(Y = y ).

Motivation:

• analyze not just the most likely path, but a set of “typical” paths

• perform inferences
ÅPr(Y ) [F (Y )]

for arbitrary functions F ,

• train structured latent variable models
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Sampling: One Arc At A Time
Probability that the last arc
of a path ending in i is ji :

Pr(ji |y ends in i) =

∑
[y ′;ji ]∈Yi exp(w (y

′) + w (ji))∑
y ∈Yi exp(w (y ))

=
exp(w (ji))∑y ′∈Yj exp(w (y

′))∑
y ∈Yi exp(w (y ))

= exp(w (ji) + qj − qi )

All paths end in n, so draw the final arc jn first.

Repeat same reasoning on the subgraph with
nodes 1, . . . , j , i.e., replace n with j and repeat
until we hit 1.

Resembles the backpointers from Viterbi:
think “stochastic backpointers”.

j

i

Forward filtering, backward sampling for DAGs

input: Topologically-ordered DAG;
output: y: a sample from Pr(y ).

initialize q1 ← 0
for i = 2, . . . , n do

qi ← log
∑
j∈Pi

exp
(
qj + w (ji)

)
y = []; i ← n
while i > 1 do

sample j ∈ Pi w.p. pj = exp(w (ji) + qj − qi )
y ← ji⌢y
i ← j
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Conclusions

If we can cast our problem as finding paths in a DAG, then dynamic programming
(DP) lets us calculate:

• argmaxy ∈Y score(y )

• log
∑

y ∈Y exp score(y ) and therefore probabilities

• samples from the distribution over structures

in linear time Θ( |V | + |E |).

Next we see a bunch of structures that fit this pattern, and some that do not.

Some structures solvable by DP cannot be represented via DAGs.
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