Lecture 8

Dynamic Programming

Part 1: Directed Acyclic Graphs

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Dynamic Programming

1 Directed Acyclic Graphs

2 Optimal Paths: The Viterbi Algorithm

3 Probabilities Over Paths: The Forward Algorithm

4 Sampling Paths

Computations For Structures

Recall: Structured outputs are:

- discrete objects
- made of smaller parts
- which interact with each other and/or constrain each other,

and we must know how to compute:

- score(y)
- for prediction: $\arg \max_{y \in \mathcal{Y}} \operatorname{score}(y)$
- for learning: $\log \sum_{y \in \mathcal{Y}} \exp(\operatorname{score}(y))$

For large problems, we can't enumerate $\mathcal Y$ (could be exponentially large).

So, we must actually make use of its structure.

Recap: Graphs

Definition 1: Weighted directed graph

A weighted directed graph is G = (V, E, w) where:

- *V* is the set of vertices (nodes) of *G*.
- E ⊂ V × V is the set of arcs of G: uv ∈ E means there is an arc from node u ∈ V to node v ∈ V (u ≠ v). Arcs are ordered pairs, so uv ≠ vu.
- $w: E \to \mathbb{R}$ is a weight function assigning a weight to each edge.

Recap: Graphs

Definition 1: Weighted directed graph

A weighted directed graph is G = (V, E, w) where:

- *V* is the set of vertices (nodes) of *G*.
- E ⊂ V × V is the set of arcs of G: uv ∈ E means there is an arc from node u ∈ V to node v ∈ V (u ≠ v). Arcs are ordered pairs, so uv ≠ vu.

Definition 2: Paths

A path *A* in *G* is a sequence of edges: $A = e_1e_2 \dots e_k$, with each $e_i \in E$, two-by-two "linked", i.e., if $e_i = u_iv_i$ and $e_{i+1} = u_{i+1}v_{i+1}$ then we must have $v_i = u_{i+1}$.

Recap: Graphs

Definition 1: Weighted directed graph

A weighted directed graph is G = (V, E, w) where:

- *V* is the set of vertices (nodes) of *G*.
- E ⊂ V × V is the set of arcs of G: *uv* ∈ E means there is an arc from node *u* ∈ V to node *v* ∈ V (*u* ≠ *v*). Arcs are ordered pairs, so *uv* ≠ *vu*.

Definition 2: Paths

A path *A* in *G* is a sequence of edges: $A = e_1e_2 \dots e_k$, with each $e_i \in E$, two-by-two "linked", i.e., if $e_i = u_iv_i$ and $e_{i+1} = u_{i+1}v_{i+1}$ then we must have $v_i = u_{i+1}$.

The weight of a path is the sum of arc weights: $w(A) = \sum_{e \in P} w(e)$.

We denote path concatenation by $A_1 A_2$ (when legal).

Directed Acyclic Graphs

Definition 3: Cycle

A cycle is a path $e_1 e_2 \dots e_k$ wherein the last edge e_k points to the node from which the first edge e_1 departs.

Directed Acyclic Graphs

Definition 3: Cycle

A cycle is a path $e_1 e_2 \dots e_k$ wherein the last edge e_k points to the node from which the first edge e_1 departs.

Definition 4. Directed acyclic graph (DAG)

A DAG is a directed graph that contains no cycles.

Directed Acyclic Graphs

Definition 3: Cycle

A cycle is a path $e_1e_2 \dots e_k$ wherein the last edge e_k points to the node from which the first edge e_1 departs.

Definition 4. Directed acyclic graph (DAG)

A DAG is a directed graph that contains no cycles.

Definition 4. Topological ordering

A topological ordering of a directed graph G = (V, E) is an ordering of its nodes v_1, v_2, \ldots, v_n such that if $v_i v_i \in E$ then i < j.

G is a DAG if and only if *G* admits a topological ordering. Rough intuition: "backward" edges against the ordering \iff cycles.

TOs: s, a, b, c, t s, b, a, c, t

Lecture 8

Dynamic Programming

Part 2: Optimal Paths: The Viterbi Algorithm

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Dynamic Programming

1 Directed Acyclic Graphs

2 Optimal Paths: The Viterbi Algorithm

3 Probabilities Over Paths: The Forward Algorithm

4 Sampling Paths

Paths In DAGs

Label nodes in topological order $V = \{1, ..., n\}$.

Let \mathcal{Y}_i be the set of paths starting at 1 and ending at *i*.

Paths In DAGs

Label nodes in topological order $V = \{1, ..., n\}$.

Let \mathcal{Y}_i be the set of paths starting at 1 and ending at *i*.

Let's assume our space of structures is $\mathcal{Y} = \mathcal{Y}_n$.

Important things to compute:

- score(y) = w(y)
- $\operatorname{argmax}_{y \in \mathcal{Y}_n} w(y)$
- $\log \sum_{y \in \mathcal{Y}_n} \exp w(y)$

Paths In DAGs

Label nodes in topological order $V = \{1, ..., n\}$.

Let \mathcal{Y}_i be the set of paths starting at 1 and ending at *i*.

Let's assume our space of structures is $\mathcal{Y} = \mathcal{Y}_n$.

Important things to compute:

- score(y) = w(y)
- $\operatorname{argmax}_{y \in \mathcal{Y}_n} w(y)$
- $\log \sum_{y \in \mathcal{Y}_n} \exp w(y)$

Later, I'll show you some structured problems that can be usefully reduced to paths in a DAG, and some that cannot.

Max-Scoring Path

- The greedy path from 1 to 5 might not be best.
- From *Data Structures and Algorithms* you might recall Dijkstra's algorithm.
 - Requires no "negative cycles" always true for DAGs.
 - Complexity: $\Theta(|V| \log |V| + |E|)$ with "Fibonacci heaps"; $\Theta(|V|^2)$ with a straightforward implementation. .

Max-Scoring Path

- The greedy path from 1 to 5 might not be best.
- From *Data Structures and Algorithms* you might recall Dijkstra's algorithm.
 - Requires no "negative cycles" always true for DAGs.
 - Complexity: $\Theta(|V| \log |V| + |E|)$ with "Fibonacci heaps"; $\Theta(|V|^2)$ with a straightforward implementation. .
- In the case of DAGs, we can do better.

Goal: the max weight of a path from 1 to *i*:

 $m_i = \max_{y \in \mathcal{Y}_i} w(y).$

Goal: the max weight of a path from 1 to *i*:

 $m_i = \max_{y \in \mathcal{Y}_i} w(y).$

Define predecessors of *i* as $P_i := \{j \in V : ji \in E\}$.

Insight 1.

Any path from to *i* is an extension of some path to predecessor $j \in P_i$ by arc *ji*.

In other words: if $y \in \mathcal{Y}_i$ then $y = y'^{ji}$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_j$.

Goal: the max weight of a path from 1 to *i*:

 $m_i = \max_{y \in \mathcal{Y}_i} w(y).$

Define predecessors of *i* as $P_i := \{j \in V : ji \in E\}$.

Insight 1.

Any path from to *i* is an extension of some path to predecessor $j \in P_i$ by arc *ji*.

In other words: if $y \in \mathcal{Y}_i$ then $y = y'^{ji}$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_j$.

Proposition: DP recurrence for max

$$m_i = \max_{j \in P_i} \left(m_j + w(ji) \right)$$

Goal: the max weight of a path from 1 to *i*:

 $m_i = \max_{y \in \mathcal{Y}_i} w(y).$

Define predecessors of *i* as $P_i := \{j \in V : ji \in E\}$.

Insight 1.

Any path from to *i* is an extension of some path to predecessor $j \in P_i$ by arc *ji*.

In other words: if $y \in \mathcal{Y}_i$ then $y = y'^{ji}$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_j$.

Proposition: DP recurrence for max

For any i > 1, the best path from 1 to i is the best among the extensions of the best path to the predecessors of i:

$$m_i = \max_{j \in P_i} \left(m_j + w(ji) \right)$$

Proof: $m_i := \max_{y \in \mathcal{Y}_i} w(y)$

Goal: the max weight of a path from 1 to *i*:

 $m_i = \max_{y \in \mathcal{Y}_i} w(y).$

Define predecessors of *i* as $P_i := \{j \in V : ji \in E\}$.

Insight 1.

Any path from to *i* is an extension of some path to predecessor $j \in P_i$ by arc *ji*.

In other words: if $y \in \mathcal{Y}_i$ then $y = y'^{ji}$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_j$.

Proposition: DP recurrence for max

$$m_i = \max_{j \in P_i} \left(m_j + w(ji) \right)$$

Proof:
$$m_i := \max_{y \in \mathcal{Y}_i} w(y)$$

= $\max_{j \in P_i} \max_{y' \in \mathcal{Y}_j} (w(y') + w(ji))$

Goal: the max weight of a path from 1 to *i*:

 $m_i = \max_{y \in \mathcal{Y}_i} w(y).$

Define predecessors of *i* as $P_i := \{j \in V : ji \in E\}$.

Insight 1.

Any path from to *i* is an extension of some path to predecessor $j \in P_i$ by arc *ji*.

In other words: if $y \in \mathcal{Y}_i$ then $y = y'^{ji}$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_j$.

Proposition: DP recurrence for max

$$m_i = \max_{j \in P_i} \left(m_j + w(ji) \right)$$

Proof:
$$m_i := \max_{y \in \mathcal{Y}_i} w(y)$$

 $= \max_{j \in P_i} \max_{y' \in \mathcal{Y}_j} (w(y') + w(ji))$
 $= \max_{j \in P_i} \left(\max_{y' \in \mathcal{Y}_j} (w(y')) + w(ji) \right)$

Goal: the max weight of a path from 1 to *i*:

 $m_i = \max_{y \in \mathcal{Y}_i} w(y).$

Define predecessors of *i* as $P_i := \{j \in V : ji \in E\}$.

Insight 1.

Any path from to *i* is an extension of some path to predecessor $j \in P_i$ by arc *ji*.

In other words: if $y \in \mathcal{Y}_i$ then $y = y'^{ji}$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_j$.

Proposition: DP recurrence for max

$$m_i = \max_{j \in P_i} \left(m_j + w(ji) \right)$$

Proof:
$$m_{i} := \max_{y \in \mathcal{Y}_{i}} w(y)$$
$$= \max_{j \in P_{i}} \max_{y' \in \mathcal{Y}_{j}} (w(y') + w(ji))$$
$$= \max_{j \in P_{i}} \left(\max_{y' \in \mathcal{Y}_{j}} (w(y')) + w(ji) \right)$$
$$= \max_{j \in P_{i}} (m_{j} + w(ji)).$$

 $m_i = \max_{j \in P_i} (m_j + w(ji))$ holds for any graph; but we would chase our own tail forever.

 $m_i = \max_{j \in P_i} (m_j + w(ji))$ holds for any graph; but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from 1 to *i* must only contain nodes j < i.

(So, we may compute m_1, \ldots, m_n in order.)

 $m_i = \max_{j \in P_i} (m_j + w(ji))$ holds for any graph; but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from 1 to *i* must only contain nodes j < i.

(So, we may compute m_1, \ldots, m_n in order.)

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG $G = (V, E, w), V = \{1, ..., n\}$ output: maximum path weights $m_1, ..., m_n$.

initialize $m_1 \leftarrow 0$ for i = 2, ..., n do $m_i \leftarrow \max_{j \in P_i} (m_j + w(ji))$

 $m_i = \max_{j \in P_i} (m_j + w(ji))$ holds for any graph; but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from 1 to *i* must only contain nodes j < i.

(So, we may compute m_1, \ldots, m_n in order.)

Insight 3.

A path acheiving maximal weight is made up of the edges j^*i , where j^* is the node selected by the max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG $G = (V, E, w), V = \{1, ..., n\}$ **output:** maximum path weights $m_1, ..., m_n$.

initialize
$$m_1 \leftarrow 0$$

for $i = 2, ..., n$ do
 $m_i \leftarrow \max_{j \in P_i} (m_j + w(ji))$

 $m_i = \max_{j \in P_i} (m_j + w(ji))$ holds for any graph; but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from 1 to *i* must only contain nodes j < i.

(So, we may compute m_1, \ldots, m_n in order.)

Insight 3.

A path acheiving maximal weight is made up of the edges j^*i , where j^* is the node selected by the max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG $G = (V, E, w), V = \{1, ..., n\}$ output: maximum path weights $m_1, ..., m_n$.

initialize
$$m_1 \leftarrow 0$$

for $i = 2, ..., n$ do
 $m_i \leftarrow \max_{\substack{j \in P_i \\ j \in P_i}} (m_j + w(ji))$
 $\pi_i \leftarrow \arg\max_{j \in P_i} (m_j + w(ji))$

Reconstruct path: follow backpointers **output:** optimal path *y* from 1 to *n* (optional) $y = []; i \leftarrow n$ while i > 1 do $y \leftarrow \pi_i i \frown y$ $i \leftarrow \pi_i$

 $m_i = \max_{j \in P_i} (m_j + w(ji))$ holds for any graph; but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from 1 to *i* must only contain nodes j < i.

(So, we may compute m_1, \ldots, m_n in order.)

Insight 3.

A path acheiving maximal weight is made up of the edges j^*i , where j^* is the node selected by the max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG $G = (V, E, w), V = \{1, ..., n\}$ output: maximum path weights $m_1, ..., m_n$.

initialize
$$m_1 \leftarrow 0$$

for $i = 2, ..., n$ do
 $m_i \leftarrow \max_{\substack{j \in P_i \\ j \in P_i}} (m_j + w(ji))$
 $\pi_i \leftarrow \arg \max_{j \in P_i} (m_j + w(ji))$

Reconstruct path: follow backpointers **output:** optimal path y from 1 to n (optional) $y = []; i \leftarrow n$ while i > 1 do $y \leftarrow \pi_i i \frown y$ $i \leftarrow \pi_i$

Complexity: $\Theta(|V| + |E|)$.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG $G = (V, E, w), V = \{1, ..., n\}$ output: maximum path weights $m_1, ..., m_n$.

initialize
$$m_1 \leftarrow 0$$

for $i = 2, ..., n$ do
 $m_i \leftarrow \max_{\substack{j \in P_i \\ j \in P_i}} (m_j + w(ji))$
 $\pi_i \leftarrow \arg \max_{\substack{j \in P_i \\ j \in P_i}} (m_j + w(ji))$

Reconstruct path: follow backpointers **output:** optimal path *y* from 1 to *n* (optional) $y = []; i \leftarrow n$ while i > 1 do $y \leftarrow \pi_i i \frown y$ $i \leftarrow \pi_i$

Complexity: $\Theta(|V| + |E|)$.

Lecture 8

Dynamic Programming

Part 3: Probabilities Over Paths: The Forward Algorithm

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Dynamic Programming

1 Directed Acyclic Graphs

2 Optimal Paths: The Viterbi Algorithm

3 Probabilities Over Paths: The Forward Algorithm

4 Sampling Paths

A weighted DAG induces a probability distributions over all paths from 1 to *n*:

$$\Pr(y) = \frac{\exp(w(y))}{\sum_{y' \in \mathcal{Y}_n} \exp(w(y'))}$$

у	w(y)	$\exp(w(y))$	$\Pr(y)$
$1 \rightarrow 2 \rightarrow 5$			
$1 \rightarrow 2 \rightarrow 4 \rightarrow 5$			
$1 \to 3 \to 4 \to 5$			

To assess Pr(y) even for a single path, the denominator sums over all paths.

A weighted DAG induces a probability distributions over all paths from 1 to *n*:

$$\Pr(y) = \frac{\exp(w(y))}{\sum_{y' \in \mathcal{Y}_n} \exp(w(y'))}$$

у	w(y)	$\exp(w(y))$	$\Pr(y)$
$1 \rightarrow 2 \rightarrow 5$	10 + 20 = 30		
$1 \rightarrow 2 \rightarrow 4 \rightarrow 5$	10 - 5 + 10 = 15		
$1 \rightarrow 3 \rightarrow 4 \rightarrow 5$	15 + 0 + 10 = 25		

To assess Pr(y) even for a single path, the denominator sums over all paths.

A weighted DAG induces a probability distributions over all paths from 1 to *n*:

$$\Pr(y) = \frac{\exp(w(y))}{\sum_{y' \in \mathcal{Y}_n} \exp(w(y'))}$$

у	w(y)	$\exp(w(y))$	$\Pr(y)$
$1 \rightarrow 2 \rightarrow 5$	10 + 20 = 30	$1.1\cdot 10^{13}$	
$1 \rightarrow 2 \rightarrow 4 \rightarrow 5$	10 - 5 + 10 = 15	$3.3 \cdot 10^{6}$	
$1 \to 3 \to 4 \to 5$	15 + 0 + 10 = 25	$7.2 \cdot 10^{10}$	

To assess Pr(y) even for a single path, the denominator sums over all paths.

A weighted DAG induces a probability distributions over all paths from 1 to *n*:

$$\Pr(y) = \frac{\exp(w(y))}{\sum_{y' \in \mathcal{Y}_n} \exp(w(y'))}$$

у	w(y)	$\exp(w(y))$	$\Pr(y)$
$1 \rightarrow 2 \rightarrow 5$	10 + 20 = 30	$1.1\cdot 10^{13}$.9930
$1 \rightarrow 2 \rightarrow 4 \rightarrow 5$	10 - 5 + 10 = 15	$3.3 \cdot 10^{6}$.0001
$1 \to 3 \to 4 \to 5$	15 + 0 + 10 = 25	$7.2 \cdot 10^{10}$.0069

To assess Pr(y) even for a single path, the denominator sums over all paths.

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$\log \Pr(y) = w(y) - \log \sum_{y' \in \mathcal{Y}_n} \exp w(y')$$

so we aim to compute this log-sum-exp directly.

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$\log \Pr(y) = w(y) - \log \sum_{y' \in \mathcal{Y}_n} \exp w(y')$$

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_j$.

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$\log \Pr(y) = w(y) - \log \sum_{y' \in \mathcal{Y}_n} \exp w(y')$$

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_j$.

Insight 4: addition distributes over log-sum-exp.

$$c + \log \sum_{i} \exp(z_i) = \log \sum_{i} \exp(c + z_i)$$

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$\log \Pr(y) = w(y) - \log \sum_{y' \in \mathcal{Y}_n} \exp w(y')$$

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_j$.

Insight 4: addition distributes over log-sum-exp.

$$c + \log \sum_{i} \exp(z_i) = \log \sum_{i} \exp(c + z_i)$$

Denote $q_i := \log \sum_{y \in \mathcal{Y}_i} \exp(w(y))$.

Proposition: DP recurrence for log-sum-exp.

$$q_i = \log \sum_{j \in P_i} \exp \left(q_j + w(ji) \right)$$

Compare with the DP recurrence for max: $m_i = \max_{i \in P_i} (m_j + w(ji)).$

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$\log \Pr(y) = w(y) - \log \sum_{y' \in \mathcal{Y}_n} \exp w(y')$$

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_j$.

Insight 4: addition distributes over log-sum-exp.

$$c + \log \sum_{i} \exp(z_i) = \log \sum_{i} \exp(c + z_i)$$

Denote $q_i := \log \sum_{y \in \mathcal{Y}_i} \exp(w(y))$.

Proposition: DP recurrence for log-sum-exp.

$$q_i = \log \sum_{j \in P_i} \exp \left(q_j + w(ji) \right)$$

Compare with the DP recurrence for max: $m_{i} = \max_{j \in P_{i}}(m_{j} + w(ji)).$ Proof: $q_{i} = \log \sum \sum \exp(w(y') + w(ji))$

roof:
$$q_i = \log \sum_{j \in P_i} \sum_{y' \in \mathcal{Y}_j} \exp(w(y') + w(ji))$$

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$\log \Pr(y) = w(y) - \log \sum_{y' \in \mathcal{Y}_n} \exp w(y')$$

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_j$.

Insight 4: addition distributes over log-sum-exp.

$$c + \log \sum_{i} \exp(z_i) = \log \sum_{i} \exp(c + z_i)$$

Denote $q_i := \log \sum_{y \in \mathcal{Y}_i} \exp(w(y))$.

Proposition: DP recurrence for log-sum-exp.

$$q_i = \log \sum_{j \in P_i} \exp \left(q_j + w(ji) \right)$$

Compare with the DP recurrence for max: $m_{i} = \max_{j \in P_{i}} (m_{j} + w(ji)).$ Proof: $q_{i} = \log \sum_{j \in P_{i}} \sum_{y' \in \mathcal{Y}_{j}} \exp(w(y') + w(ji))$ $= \log \sum_{j \in P_{i}} \exp\left(\log \sum_{y' \in \mathcal{Y}_{j}} \exp(w(y')) + w(ji)\right)$

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$\log \Pr(y) = w(y) - \log \sum_{y' \in \mathcal{Y}_n} \exp w(y')$$

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If $y \in \mathcal{Y}_i$ then $y = y' \cap ji$ for some $j \in P_i$ and some $y' \in \mathcal{Y}_j$.

Insight 4: addition distributes over log-sum-exp.

$$c + \log \sum_{i} \exp(z_i) = \log \sum_{i} \exp(c + z_i)$$

Denote $q_i := \log \sum_{y \in \mathcal{Y}_i} \exp(w(y))$.

Proposition: DP recurrence for log-sum-exp.

$$q_i = \log \sum_{j \in P_i} \exp \left(q_j + w(ji) \right)$$

Compare with the DP recurrence for max: $m_{i} = \max_{j \in P_{i}} (m_{j} + w(ji)).$ Proof: $q_{i} = \log \sum_{j \in P_{i}} \sum_{y' \in \mathcal{Y}_{j}} \exp(w(y') + w(ji))$ $= \log \sum_{j \in P_{i}} \exp\left(\log \sum_{y' \in \mathcal{Y}_{j}} \exp(w(y')) + w(ji)\right)$ $= \log \sum_{j \in P_{i}} \exp(q_{j} + w(ji)).$

15/∞

The Forward Algorithm

General forward algorithm for DAGs

input: Topologically-ordered DAG $G = (V, E, w), V = \{1, ..., n\}$ **output:** $q_n := \log \sum_{y \in \mathcal{Y}_n} \exp w(y)$.

initialize
$$q_1 \leftarrow 0$$

for $i = 2, ..., n$ do
 $q_i \leftarrow \log \sum_{j \in P_i} \exp(q_j + w(ji))$

Complexity: $\Theta(|V| + |E|)$.

Lets us calculate the log-probability of any given sequence $\log Pr(y)$.

Can use autodiff to get $\nabla_w \log \Pr(y)$.

Why are these two algorithms so similar?

Deriving the DP recurrences was almost identical.

Why are these two algorithms so similar?

Deriving the DP recurrences was almost identical.

The pattern:

- $x \oplus y = \max(x, y)$; $x \otimes y = x + y$ form a semiring over $\mathbb{R} \cup \{-\infty\}$.
- $x \oplus y = \log(e^x + e^y)$; $x \otimes y = x + y$ form a semiring over $\mathbb{R} \cup \{-\infty\}$.

Why are these two algorithms so similar?

Deriving the DP recurrences was almost identical.

The pattern:

- $x \oplus y = \max(x, y)$; $x \otimes y = x + y$ form a semiring over $\mathbb{R} \cup \{-\infty\}$.
- $x \oplus y = \log(e^x + e^y)$; $x \otimes y = x + y$ form a semiring over $\mathbb{R} \cup \{-\infty\}$.

This is a very productive generalization that leads to other algorithms too:

- the boolean semiring x ⊕ y = x ∨ y, x ⊗ y = x ∧ y over {0,1} yields an algorithm for path existence;
- there is a semiring that leads to top-k paths.

Lecture 8

Dynamic Programming

Part 4: Sampling Paths

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Dynamic Programming

1 Directed Acyclic Graphs

2 Optimal Paths: The Viterbi Algorithm

3 Probabilities Over Paths: The Forward Algorithm

4 Sampling Paths

Bonus goal: draw samples from the distribution over paths: $y_1, \ldots, y_k \sim \Pr(Y = y)$. Motivation:

- analyze not just the most likely path, but a set of "typical" paths
- perform inferences

 $\mathbb{E}_{\mathsf{Pr}(Y)}[F(Y)]$

for arbitrary functions *F*,

• train structured latent variable models

Probability that the last arc of a path ending in *i* is *ji*:

Pr(ji|y ends in i) =

Probability that the last arc of a path ending in *i* is *ji*:

$$\Pr(ji|y \text{ ends in } i) = \frac{\sum_{[y';ji] \in \mathcal{Y}_i} \exp(w(y') + w(ji))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$

Probability that the last arc of a path ending in *i* is *ji*:

$$\Pr(ji|y \text{ ends in } i) = \frac{\sum_{[y';ji] \in \mathcal{Y}_i} \exp(w(y') + w(ji))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \frac{\exp(w(ji))\sum_{y' \in \mathcal{Y}_j} \exp(w(y'))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$

Probability that the last arc of a path ending in *i* is *ji*:

$$\Pr(ji|y \text{ ends in } i) = \frac{\sum_{[y';ji] \in \mathcal{Y}_i} \exp(w(y') + w(ji))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \frac{\exp(w(ji))\sum_{y' \in \mathcal{Y}_j} \exp(w(y))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \exp(w(ji) + q_j - q_i)$$

Probability that the last arc of a path ending in *i* is *ji*:

$$\Pr(ji|y \text{ ends in } i) = \frac{\sum_{[y';ji] \in \mathcal{Y}_i} \exp(w(y') + w(ji))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \frac{\exp(w(ji))\sum_{y' \in \mathcal{Y}_j} \exp(w(y))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \exp(w(ji) + q_j - q_i)$$

All paths end in *n*, so draw the final arc *jn* first.

Probability that the last arc of a path ending in *i* is *ji*:

$$\Pr(ji|y \text{ ends in } i) = \frac{\sum_{[y';ji] \in \mathcal{Y}_i} \exp(w(y') + w(ji))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \frac{\exp(w(ji))\sum_{y' \in \mathcal{Y}_j} \exp(w(y))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \exp(w(ji) + q_j - q_i)$$

Repeat same reasoning on the subgraph with nodes $1, \ldots, j$, i.e., replace *n* with *j* and repeat until we hit 1.

Resembles the backpointers from Viterbi: think "stochastic backpointers".

Probability that the last arc of a path ending in *i* is *ji*:

$$\Pr(ji|y \text{ ends in } i) = \frac{\sum_{[y';ji] \in \mathcal{Y}_i} \exp(w(y') + w(ji))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \frac{\exp(w(ji))\sum_{y' \in \mathcal{Y}_j} \exp(w(y))}{\sum_{y \in \mathcal{Y}_i} \exp(w(y))}$$
$$= \exp(w(ji) + q_j - q_i)$$

All paths end in *n*, so draw the final arc *jn* first.

Repeat same reasoning on the subgraph with nodes $1, \ldots, j$, i.e., replace *n* with *j* and repeat until we hit 1.

Resembles the backpointers from Viterbi: think "stochastic backpointers".

Forward filtering, backward sampling for DAGs

input: Topologically-ordered DAG; **output:** y: a sample from Pr(*y*).

initialize
$$q_1 \leftarrow 0$$

for $i = 2, ..., n$ do
 $q_i \leftarrow \log \sum_{j \in P_i} \exp (q_j + w(ji))$

$$y = []; i \leftarrow n$$

while $i > 1$ do
sample $j \in P_i$ w.p. $p_j = \exp(w(ji) + q_j - q_i)$
 $y \leftarrow ji \frown y$
 $i \leftarrow j$

Conclusions

If we can cast our problem as finding paths in a DAG, then dynamic programming (DP) lets us calculate:

- $\operatorname{argmax}_{y \in \mathcal{Y}} \operatorname{score}(y)$
- $\log \sum_{y \in \mathcal{Y}} \exp \operatorname{score}(y)$ and therefore probabilities
- ዄ samples from the distribution over structures

in linear time $\Theta(|V| + |E|)$.

Next we see a bunch of structures that fit this pattern, and some that do not.

Some structures solvable by DP cannot be represented via DAGs.