Dynamic Programming

Part 1: Directed Acyclic Graphs

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Dynamic Programming

(1) Directed Acyclic Graphs
(2) Optimal Paths: The Viterbi Algorithm
(3) Probabilities Over Paths: The Forward Algorithm
(4) Sampling Paths

Computations For Structures

Recall: Structured outputs are:

- discrete objects
- made of smaller parts
- which interact with each other and/or constrain each other,
and we must know how to compute:
- score (y)
- for prediction: arg $\max _{y \in y} \operatorname{score}(y)$
- for learning: $\log \sum_{y \in y} \exp (\operatorname{score}(y))$

For large problems, we can't enumerate \mathcal{Y} (could be exponentially large).
So, we must actually make use of its structure.

Recap: Graphs

Definition 1: Weighted directed graph

A weighted directed graph is $G=(V, E, w)$ where:

- V is the set of vertices (nodes) of G.
- $E \subset V \times V$ is the set of arcs of G : $u v \in E$ means there is an arc from node $u \in V$ to node $v \in V$ ($u \neq v$).

Arcs are ordered pairs, so $u v \neq v u$.

- $w: E \rightarrow \mathbb{R}$ is a weight function assigning a weight to each edge.

Recap: Graphs

Definition 1: Weighted directed graph

A weighted directed graph is $G=(V, E, w)$ where:

- V is the set of vertices (nodes) of G.
- $E \subset V \times V$ is the set of arcs of G :
$u v \in E$ means there is an arc from node $u \in V$ to node $v \in V$
($u \neq v$).

Arcs are ordered pairs, so $u v \neq v u$.

- $w: E \rightarrow \mathbb{R}$ is a weight function assigning a weight to each edge.

Definition 2: Paths

A path A in G is a sequence of edges: $A=e_{1} e_{2} \ldots e_{k}$, with each $e_{i} \in E$,
 two-by-two "linked", i.e., if $e_{i}=u_{i} v_{i}$ and $e_{i+1}=u_{i+1} v_{i+1}$ then we must have $v_{i}=u_{i+1}$.

Recap: Graphs

Definition 1: Weighted directed graph

A weighted directed graph is $G=(V, E, w)$ where:

- V is the set of vertices (nodes) of G.
- $E \subset V \times V$ is the set of arcs of G :
$u v \in E$ means there is an arc from node $u \in V$ to node $v \in V$
($u \neq v$).

Arcs are ordered pairs, so $u v \neq v u$.

- $w: E \rightarrow \mathbb{R}$ is a weight function assigning a weight to each edge.

Definition 2: Paths

A path A in G is a sequence of edges: $A=e_{1} e_{2} \ldots e_{k}$, with each $e_{i} \in E$,
 two-by-two "linked", i.e., if $e_{i}=u_{i} v_{i}$ and $e_{i+1}=u_{i+1} v_{i+1}$ then we must have $v_{i}=u_{i+1}$.

The weight of a path is the sum of arc weights: $w(A)=\sum_{e \in P} w(e)$.
We denote path concatenation by $A_{1}^{\bigodot} A_{2}$ (when legal).

Directed Acyclic Graphs

Definition 3: Cycle
A cycle is a path $e_{1} e_{2} \ldots e_{k}$ wherein the last edge e_{k} points to the node
 from which the first edge e_{1} departs.

Directed Acyclic Graphs

Definition 3: Cycle

A cycle is a path $e_{1} e_{2} \ldots e_{k}$ wherein the last edge e_{k} points to the node from which the first edge e_{1} departs.

Definition 4. Directed acyclic graph (DAG)
A DAG is a directed graph that contains no cycles.

Directed Acyclic Graphs

Definition 3: Cycle

A cycle is a path $e_{1} e_{2} \ldots e_{k}$ wherein the last edge e_{k} points to the node from which the first edge e_{1} departs.

Definition 4. Directed acyclic graph (DAG)

A DAG is a directed graph that contains no cycles.

Definition 4. Topological ordering

A topological ordering of a directed graph $G=(V, E)$ is an ordering of its nodes $v_{1}, v_{2}, \ldots, v_{n}$ such that if $v_{i} v_{j} \in E$ then $i<j$.
G is a DAG if and only if G admits a topological ordering.

TOs:
s, a, b, c, t
s, b, a, c, t

Lecture 8

Dynamic Programming

Part 2: Optimal Paths: The Viterbi Algorithm

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Dynamic Programming

(1) Directed Acyclic Graphs
(2) Optimal Paths: The Viterbi Algorithm
(3) Probabilities Over Paths: The Forward Algorithm
(4) Sampling Paths

Paths In DAGs

Label nodes in topological order $V=\{1, \ldots, n\}$.
Let y_{i} be the set of paths starting at 1 and ending at i.

Paths In DAGs

Label nodes in topological order $V=\{1, \ldots, n\}$.
Let y_{i} be the set of paths starting at 1 and ending at i.
Let's assume our space of structures is $y=y_{n}$.

Important things to compute:

- $\operatorname{score}(y)=w(y)$
- $\operatorname{argmax}_{y \in y_{n}} w(y)$
- $\log \sum_{y \in y_{n}} \exp w(y)$

Paths In DAGs

Label nodes in topological order $V=\{1, \ldots, n\}$.
Let y_{i} be the set of paths starting at 1 and ending at i.
Let's assume our space of structures is $y=y_{n}$.

Important things to compute:

- $\operatorname{score}(y)=w(y)$
- $\operatorname{argmax}_{y \in y_{n}} w(y)$
- $\log \sum_{y \in y_{n}} \exp w(y)$

Later, l'll show you some structured problems that can be usefully reduced to paths in a DAG, and some that cannot.

Max-Scoring Path

- The greedy path from 1 to 5 might not be best.
- From Data Structures and Algorithms you might recall Dijkstra's algorithm.
- Requires no "negative cycles" - always true for DAGs.
- Complexity: $\Theta(|V| \log |V|+|E|)$ with
 "Fibonacci heaps"; $\Theta\left(|V|^{2}\right)$ with a straightforward implementation. .

Max-Scoring Path

- The greedy path from 1 to 5 might not be best.
- From Data Structures and Algorithms you might recall Dijkstra's algorithm.
- Requires no "negative cycles" - always true for DAGs.
- Complexity: $\Theta(|V| \log |V|+|E|)$ with
 "Fibonacci heaps"; $\Theta\left(|V|^{2}\right)$ with a straightforward implementation. .
- In the case of DAGs, we can do better.

Dynamic Programming Recurrence

Goal: the max weight of a path from 1 to i :

$$
m_{i}=\max _{y \in \mathcal{Y}_{i}} w(y)
$$

Dynamic Programming Recurrence

Goal: the max weight of a path from 1 to i :

$$
m_{i}=\max _{y \in \mathcal{Y}_{i}} w(y)
$$

Define predecessors of i as $P_{i}:=\{j \in V: j i \in E\}$.
Insight 1.
Any path from to i is an extension of some path to predecessor $j \in P_{i}$ by arc $j i$.
In other words: if $y \in \mathcal{Y}_{i}$ then $y=y^{\prime}$ ji for some $j \in P_{i}$ and some $y^{\prime} \in \mathcal{Y}_{j}$.

Dynamic Programming Recurrence

Goal: the max weight of a path from 1 to i :

$$
m_{i}=\max _{y \in y_{i}} w(y)
$$

Define predecessors of i as $P_{i}:=\{j \in V: j i \in E\}$.
Insight 1.
Any path from to i is an extension of some path to predecessor $j \in P_{i}$ by arc $j i$.
In other words: if $y \in \mathcal{Y}_{i}$ then $y=y^{\prime}$ ji for some $j \in P_{i}$ and some $y^{\prime} \in \mathcal{Y}_{j}$.

Proposition: DP recurrence for max

For any $i>1$, the best path from 1 to i is the best among the extensions of the best path to the predecessors of i :

$$
m_{i}=\max _{j \in P_{i}}\left(m_{j}+w(j i)\right)
$$

Dynamic Programming Recurrence

Goal: the max weight of a path from 1 to i :

$$
m_{i}=\max _{y \in y_{i}} w(y)
$$

Define predecessors of i as $P_{i}:=\{j \in V: j i \in E\}$. Insight 1.
Any path from to i is an extension of some path to predecessor $j \in P_{i}$ by arc $j i$.
In other words: if $y \in \mathcal{Y}_{i}$ then $y=y^{\prime}$ ji for some $j \in P_{i}$ and some $y^{\prime} \in \mathcal{Y}_{j}$.

Proposition: DP recurrence for max

For any $i>1$, the best path from 1 to i is the best among the extensions of the best path to the predecessors of i :

$$
m_{i}=\max _{j \in P_{i}}\left(m_{j}+w(j i)\right)
$$

$$
\text { Proof: } m_{i}:=\max _{y \in y_{i}} w(y)
$$

Dynamic Programming Recurrence

Goal: the max weight of a path from 1 to i :

$$
m_{i}=\max _{y \in y_{i}} w(y) .
$$

Define predecessors of i as $P_{i}:=\{j \in V: j i \in E\}$.
Insight 1.
Any path from to i is an extension of some path to predecessor $j \in P_{i}$ by arc $j i$.
In other words: if $y \in \mathcal{Y}_{i}$ then $y=y^{\prime}$ ji for some $j \in P_{i}$ and some $y^{\prime} \in \mathcal{Y}_{j}$.

Proposition: DP recurrence for max

For any $i>1$, the best path from 1 to i is the best among the extensions of the best path to the predecessors of i :

$$
m_{i}=\max _{j \in P_{i}}\left(m_{j}+w(j i)\right)
$$

$$
\text { Proof: } \quad \begin{aligned}
m_{i} & :=\max _{y \in \mathcal{Y}_{i}} w(y) \\
& =\max _{j \in P_{i}} \max _{y^{\prime} \in Y_{j}}\left(w\left(y^{\prime}\right)+w(j i)\right)
\end{aligned}
$$

Dynamic Programming Recurrence

Goal: the max weight of a path from 1 to i :

$$
m_{i}=\max _{y \in y_{i}} w(y) .
$$

Define predecessors of i as $P_{i}:=\{j \in V: j i \in E\}$.
Insight 1.
Any path from to i is an extension of some path to predecessor $j \in P_{i}$ by arc $j i$.
In other words: if $y \in \mathcal{Y}_{i}$ then $y=y^{\prime}$ ji for some $j \in P_{i}$ and some $y^{\prime} \in \mathcal{Y}_{j}$.

Proposition: DP recurrence for max

For any $i>1$, the best path from 1 to i is the best among the extensions of the best path to the predecessors of i :

$$
m_{i}=\max _{j \in P_{i}}\left(m_{j}+w(j i)\right)
$$

$$
\text { Proof: } \quad \begin{aligned}
m_{i} & :=\max _{y \in y_{i}} w(y) \\
& =\max _{j \in P_{i}} \max _{y^{\prime} \in \mathcal{Y}_{j}}\left(w\left(y^{\prime}\right)+w(j i)\right) \\
& =\max _{j \in P_{i}}\left(\max _{y^{\prime} \in \mathcal{Y}_{j}}\left(w\left(y^{\prime}\right)\right)+w(j i)\right)
\end{aligned}
$$

Dynamic Programming Recurrence

Goal: the max weight of a path from 1 to i :

$$
m_{i}=\max _{y \in \mathcal{Y}_{i}} w(y)
$$

Define predecessors of i as $P_{i}:=\{j \in V: j i \in E\}$.
Insight 1.
Any path from to i is an extension of some path to predecessor $j \in P_{i}$ by arc $j i$.
In other words: if $y \in \mathcal{Y}_{i}$ then $y=y^{\prime}$ ji for some $j \in P_{i}$ and some $y^{\prime} \in \mathcal{Y}_{j}$.

Proposition: DP recurrence for max

For any $i>1$, the best path from 1 to i is the best among the extensions of the best path to the predecessors of i :

$$
m_{i}=\max _{j \in P_{i}}\left(m_{j}+w(j i)\right)
$$

$$
\text { Proof: } \quad \begin{aligned}
m_{i} & :=\max _{y \in \mathcal{Y}_{i}} w(y) \\
& =\max _{j \in P_{i}} \max _{y^{\prime} \in \mathscr{Y}_{j}}\left(w\left(y^{\prime}\right)+w(j i)\right) \\
& =\max _{j \in P_{i}}\left(\max _{y^{\prime} \in y_{j}}\left(w\left(y^{\prime}\right)\right)+w(j i)\right) \\
& =\max _{j \in P_{i}}\left(m_{j}+w(j i)\right) .
\end{aligned}
$$

The Viterbi Algorithm

$m_{i}=\max _{j \in P_{i}}\left(m_{j}+w(j i)\right)$ holds for any graph;
but we would chase our own tail forever.

The Viterbi Algorithm

$m_{i}=\max _{j \in P_{i}}\left(m_{j}+w(j i)\right)$ holds for any graph; but we would chase our own tail forever.

Insight 2.
In a topologically-ordered DAG, any path from
1 to i must only contain nodes $j<i$.
(So, we may compute m_{1}, \ldots, m_{n} in order.)

The Viterbi Algorithm

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
$G=(V, E, w), V=\{1, \ldots, n\}$ output: maximum path weights m_{1}, \ldots, m_{n}.

$$
\begin{aligned}
& \text { initialize } m_{1} \leftarrow 0 \\
& \text { for } i=2, \ldots, n \text { do } \\
& \quad m_{i} \leftarrow \max _{j \in P_{i}}\left(m_{j}+w(j i)\right)
\end{aligned}
$$

In a topologically-ordered DAG, any path from 1 to i must only contain nodes $j<i$.
(So, we may compute m_{1}, \ldots, m_{n} in order.)

The Viterbi Algorithm

$m_{i}=\max _{j \in P_{i}}\left(m_{j}+w(j i)\right)$ holds for any graph; but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from 1 to i must only contain nodes $j<i$.
(So, we may compute m_{1}, \ldots, m_{n} in order.)

Insight 3.

A path acheiving maximal weight is made up of the edges $j^{\star} i$, where j^{\star} is the node selected by the max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
$G=(V, E, w), V=\{1, \ldots, n\}$
output: maximum path weights m_{1}, \ldots, m_{n}.

$$
\begin{aligned}
& \text { initialize } m_{1} \leftarrow 0 \\
& \text { for } i=2, \ldots, n \text { do } \\
& \quad m_{i} \leftarrow \max _{j \in P_{i}}\left(m_{j}+w(j i)\right)
\end{aligned}
$$

The Viterbi Algorithm

$m_{i}=\max _{j \in P_{i}}\left(m_{j}+w(j i)\right)$ holds for any graph; but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from 1 to i must only contain nodes $j<i$.
(So, we may compute m_{1}, \ldots, m_{n} in order.)

Insight 3.

A path acheiving maximal weight is made up of the edges $j^{\star} i$, where j^{\star} is the node selected by the max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
$G=(V, E, w), V=\{1, \ldots, n\}$
output: maximum path weights m_{1}, \ldots, m_{n}.

```
initialize \(m_{1} \leftarrow 0\)
for \(i=2, \ldots, n\) do
    \(m_{i} \leftarrow \max _{j \in P_{i}}\left(m_{j}+w(j i)\right)\)
    \(\pi_{i} \leftarrow \arg \max _{j \in P_{i}}\left(m_{j}+w(j i)\right)\)
```

Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
$y=[] ; i \leftarrow n$
while $i>1$ do

$$
\begin{aligned}
& y \leftarrow \pi_{i} i \leftharpoondown y \\
& i \leftarrow \pi_{i}
\end{aligned}
$$

The Viterbi Algorithm

$m_{i}=\max _{j \in P_{i}}\left(m_{j}+w(j i)\right)$ holds for any graph; but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from 1 to i must only contain nodes $j<i$.
(So, we may compute m_{1}, \ldots, m_{n} in order.)

Insight 3.

A path acheiving maximal weight is made up of the edges $j^{\star} i$, where j^{\star} is the node selected by the max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
$G=(V, E, w), V=\{1, \ldots, n\}$
output: maximum path weights m_{1}, \ldots, m_{n}.

$$
\begin{aligned}
& \text { initialize } m_{1} \leftarrow 0 \\
& \text { for } i=2, \ldots, n \text { do } \\
& \qquad m_{i} \leftarrow \max _{j \in P_{i}}\left(m_{j}+w(j i)\right) \\
& \qquad \pi_{i} \leftarrow \arg \max _{j \in P_{i}}\left(m_{j}+w(j i)\right)
\end{aligned}
$$

Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
$y=[] ; i \leftarrow n$
while $i>1$ do

$$
\begin{aligned}
& y \leftarrow \pi_{i} i \leftharpoondown y \\
& i \leftarrow \pi_{i}
\end{aligned}
$$

Complexity: $\Theta(|V|+|E|)$.

The Viterbi Algorithm

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
$G=(V, E, w), V=\{1, \ldots, n\}$ output: maximum path weights m_{1}, \ldots, m_{n}.

$$
\begin{aligned}
& \text { initialize } m_{1} \leftarrow 0 \\
& \text { for } i=2, \ldots, n \text { do } \\
& \qquad m_{i} \leftarrow \max _{j \in P_{i}}\left(m_{j}+w(j i)\right) \\
& \quad \pi_{i} \leftarrow \arg \max _{j \in P_{i}}\left(m_{j}+w(j i)\right)
\end{aligned}
$$

Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
$y=[] ; i \leftarrow n$
while $i>1$ do

$$
\begin{aligned}
& y \leftarrow \pi_{i} i \leftharpoondown y \\
& i \leftarrow \pi_{i}
\end{aligned}
$$

Complexity: $\Theta(|V|+|E|)$.

Lecture 8

Dynamic Programming

Part 3: Probabilities Over Paths: The Forward Algorithm

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Dynamic Programming

(1) Directed Acyclic Graphs
(2) Optimal Paths: The Viterbi Algorithm
(3) Probabilities Over Paths: The Forward Algorithm
(4) Sampling Paths

Probability Distributions

A weighted DAG induces a probability distributions over all paths from 1 to n :

$$
\operatorname{Pr}(y)=\frac{\exp (w(y))}{\sum_{y^{\prime} \in y_{n}} \exp \left(w\left(y^{\prime}\right)\right)}
$$

y	$w(y)$	$\exp (w(y))$	$\operatorname{Pr}(y)$
$1 \rightarrow 2 \rightarrow 5$			
$1 \rightarrow 2 \rightarrow 4 \rightarrow 5$			
$1 \rightarrow 3 \rightarrow 4 \rightarrow 5$			

To assess $\operatorname{Pr}(y)$ even for a single path, the denominator sums over all paths.

Next goal: calculate this denominator efficiently.

Probability Distributions

A weighted DAG induces a probability distributions over all paths from 1 to n :

$$
\operatorname{Pr}(y)=\frac{\exp (w(y))}{\sum_{y^{\prime} \in y_{n}} \exp \left(w\left(y^{\prime}\right)\right)}
$$

y	$w(y)$	$\exp (w(y))$	$\operatorname{Pr}(y)$
$1 \rightarrow 2 \rightarrow 5$	$10+20=30$		
$1 \rightarrow 2 \rightarrow 4 \rightarrow 5$	$10-5+10=15$		
$1 \rightarrow 3 \rightarrow 4 \rightarrow 5$	$15+0+10=25$		

To assess $\operatorname{Pr}(y)$ even for a single path, the denominator sums over all paths.

Next goal: calculate this denominator efficiently.

Probability Distributions

A weighted DAG induces a probability distributions over all paths from 1 to n :

$$
\operatorname{Pr}(y)=\frac{\exp (w(y))}{\sum_{y^{\prime} \in \mathcal{Y}_{n}} \exp \left(w\left(y^{\prime}\right)\right)}
$$

y	$w(y)$	$\exp (w(y))$	$\operatorname{Pr}(y)$
$1 \rightarrow 2 \rightarrow 5$	$10+20=30$	$1.1 \cdot 10^{13}$	
$1 \rightarrow 2 \rightarrow 4 \rightarrow 5$	$10-5+10=15$	$3.3 \cdot 10^{6}$	
$1 \rightarrow 3 \rightarrow 4 \rightarrow 5$	$15+0+10=25$	$7.2 \cdot 10^{10}$	

To assess $\operatorname{Pr}(y)$ even for a single path, the denominator sums over all paths.

Next goal: calculate this denominator efficiently.

Probability Distributions

A weighted DAG induces a probability distributions over all paths from 1 to n :

$$
\operatorname{Pr}(y)=\frac{\exp (w(y))}{\sum_{y^{\prime} \in \mathcal{Y}_{n}} \exp \left(w\left(y^{\prime}\right)\right)}
$$

y	$w(y)$	$\exp (w(y))$	$\operatorname{Pr}(y)$
$1 \rightarrow 2 \rightarrow 5$	$10+20=30$	$1.1 \cdot 10^{13}$.9930
$1 \rightarrow 2 \rightarrow 4 \rightarrow 5$	$10-5+10=15$	$3.3 \cdot 10^{6}$.0001
$1 \rightarrow 3 \rightarrow 4 \rightarrow 5$	$15+0+10=25$	$7.2 \cdot 10^{10}$.0069

To assess $\operatorname{Pr}(y)$ even for a single path, the denominator sums over all paths.

Next goal: calculate this denominator efficiently.

Log-Probability DP Recurrence

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$
\log \operatorname{Pr}(y)=w(y)-\log \sum_{y^{\prime} \in \mathcal{Y}_{n}} \exp w\left(y^{\prime}\right)
$$

so we aim to compute this log-sum-exp directly.

Log-Probability DP Recurrence

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$
\log \operatorname{Pr}(y)=w(y)-\log \sum_{y^{\prime} \in \mathcal{Y}_{n}} \exp w\left(y^{\prime}\right)
$$

so we aim to compute this log-sum-exp directly.
Insight 1 (from before).
If $y \in Y_{i}$ then $y=y^{\prime}-j i$ for some $j \in P_{i}$
and some $y^{\prime} \in \mathcal{Y}_{j}$.

Log-Probability DP Recurrence

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$
\log \operatorname{Pr}(y)=w(y)-\log \sum_{y^{\prime} \in \mathcal{Y}_{n}} \exp w\left(y^{\prime}\right)
$$

so we aim to compute this log-sum-exp directly.
Insight 1 (from before).
If $y \in Y_{i}$ then $y=y^{\prime}-j i$ for some $j \in P_{i}$
and some $y^{\prime} \in \mathcal{Y}_{j}$.

Insight 4: addition distributes over log-sum-exp.

$$
c+\log \sum_{i} \exp \left(z_{i}\right)=\log \sum_{i} \exp \left(c+z_{i}\right)
$$

Log-Probability DP Recurrence

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$
\log \operatorname{Pr}(y)=w(y)-\log \sum_{y^{\prime} \in \mathcal{Y}_{n}} \exp w\left(y^{\prime}\right)
$$

so we aim to compute this log-sum-exp directly.
Insight 1 (from before).
If $y \in Y_{i}$ then $y=y^{\prime} j i$ for some $j \in P_{i}$ and some $y^{\prime} \in \mathcal{Y}_{j}$.

Insight 4: addition distributes over log-sum-exp.

$$
c+\log \sum_{i} \exp \left(z_{i}\right)=\log \sum_{i} \exp \left(c+z_{i}\right)
$$

Denote $q_{i}:=\log \sum_{y \in y_{i}} \exp (w(y))$.
Proposition: DP recurrence for log-sum-exp.

$$
q_{i}=\log \sum_{j \in P_{i}} \exp \left(q_{j}+w(j i)\right)
$$

Compare with the DP recurrence for max:

$$
m_{i}=\max _{j \in P_{i}}\left(m_{j}+w(j i)\right) .
$$

Log-Probability DP Recurrence

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$
\log \operatorname{Pr}(y)=w(y)-\log \sum_{y^{\prime} \in \mathcal{Y}_{n}} \exp w\left(y^{\prime}\right)
$$

so we aim to compute this log-sum-exp directly.
Insight 1 (from before).
If $y \in Y_{i}$ then $y=y^{\prime}-j i$ for some $j \in P_{i}$ and some $y^{\prime} \in \mathcal{Y}_{j}$.

Insight 4: addition distributes over log-sum-exp.

$$
c+\log \sum_{i} \exp \left(z_{i}\right)=\log \sum_{i} \exp \left(c+z_{i}\right)
$$

Denote $q_{i}:=\log \sum_{y \in y_{i}} \exp (w(y))$.
Proposition: DP recurrence for log-sum-exp.

$$
q_{i}=\log \sum_{j \in P_{i}} \exp \left(q_{j}+w(j i)\right)
$$

Compare with the DP recurrence for max:

$$
m_{i}=\max _{j \in P_{i}}\left(m_{j}+w(j i)\right) .
$$

Proof: $\quad q_{i}=\log \sum_{j \in P_{i}} \sum_{y^{\prime} \in \mathcal{Y}_{j}} \exp \left(w\left(y^{\prime}\right)+w(j i)\right)$

Log-Probability DP Recurrence

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$
\log \operatorname{Pr}(y)=w(y)-\log \sum_{y^{\prime} \in \mathcal{Y}_{n}} \exp w\left(y^{\prime}\right)
$$

so we aim to compute this log-sum-exp directly.
Insight 1 (from before).
If $y \in Y_{i}$ then $y=y^{\prime}-j i$ for some $j \in P_{i}$ and some $y^{\prime} \in \mathcal{Y}_{j}$.

Insight 4: addition distributes over log-sum-exp.

$$
c+\log \sum_{i} \exp \left(z_{i}\right)=\log \sum_{i} \exp \left(c+z_{i}\right)
$$

Denote $q_{i}:=\log \sum_{y \in y_{i}} \exp (w(y))$.
Proposition: DP recurrence for log-sum-exp.

$$
q_{i}=\log \sum_{j \in P_{i}} \exp \left(q_{j}+w(j i)\right)
$$

Compare with the DP recurrence for max:

$$
m_{i}=\max _{j \in P_{i}}\left(m_{j}+w(j i)\right) .
$$

Proof: $\quad q_{i}=\log \sum_{j \in P_{i}} \sum_{y^{\prime} \in \mathcal{Y}_{j}} \exp \left(w\left(y^{\prime}\right)+w(j i)\right)$
$=\log \sum_{j \in P_{i}} \exp \left(\log \sum_{y^{\prime} \in y_{j}} \exp \left(w\left(y^{\prime}\right)\right)+w(j i)\right)$

Log-Probability DP Recurrence

Since $\exp w(y)$ can be huge, it's better to work with log-probabilities:

$$
\log \operatorname{Pr}(y)=w(y)-\log \sum_{y^{\prime} \in \mathcal{Y}_{n}} \exp w\left(y^{\prime}\right)
$$

so we aim to compute this log-sum-exp directly.
Insight 1 (from before).
If $y \in Y_{i}$ then $y=y^{\prime \frown} j i$ for some $j \in P_{i}$ and some $y^{\prime} \in \mathcal{Y}_{j}$.

Insight 4: addition distributes over log-sum-exp.

$$
c+\log \sum_{i} \exp \left(z_{i}\right)=\log \sum_{i} \exp \left(c+z_{i}\right)
$$

Denote $q_{i}:=\log \sum_{y \in y_{i}} \exp (w(y))$.
Proposition: DP recurrence for log-sum-exp.

$$
q_{i}=\log \sum_{j \in P_{i}} \exp \left(q_{j}+w(j i)\right)
$$

Compare with the DP recurrence for max:

$$
m_{i}=\max _{j \in P_{i}}\left(m_{j}+w(j i)\right) .
$$

$$
\text { Proof: } \quad \begin{aligned}
q_{i} & =\log \sum_{j \in P_{i}} \sum_{y^{\prime} \in \mathcal{Y}_{j}} \exp \left(w\left(y^{\prime}\right)+w(j i)\right) \\
& =\log \sum_{j \in P_{i}} \exp \left(\log \sum_{y^{\prime} \in \mathcal{Y}_{j}} \exp \left(w\left(y^{\prime}\right)\right)+w(j i)\right) \\
& =\log \sum_{j \in P_{i}} \exp \left(q_{j}+w(j i)\right)
\end{aligned}
$$

The Forward Algorithm

General forward algorithm for DAGs

input: Topologically-ordered DAG
$G=(V, E, w), V=\{1, \ldots, n\}$
output: $q_{n}:=\log \sum_{y \in \mathcal{Y}_{n}} \exp w(y)$.
initialize $q_{1} \leftarrow 0$
for $i=2, \ldots, n$ do
$q_{i} \leftarrow \log \sum_{j \in P_{i}} \exp \left(q_{j}+w(j i)\right)$

Complexity: $\Theta(|V|+|E|)$.
Lets us calculate the log-probability of any given sequence $\log \operatorname{Pr}(y)$.

Can use autodiff to get $\nabla_{w} \log \operatorname{Pr}(y)$.

E. Spot A Pattern?

Why are these two algorithms so similar?
Deriving the DP recurrences was almost identical.

ED Spot A Pattern?

Why are these two algorithms so similar?
Deriving the DP recurrences was almost identical.
The pattern:

- $x \oplus y=\max (x, y) ; \quad x \otimes y=x+y$ form a semiring over $\mathbb{R} \cup\{-\infty\}$.
- $x \oplus y=\log \left(e^{x}+e^{y}\right) ; x \otimes y=x+y$ form a semiring over $\mathbb{R} \cup\{-\infty\}$.

है Spot A Pattern?

Why are these two algorithms so similar?
Deriving the DP recurrences was almost identical.
The pattern:

- $x \oplus y=\max (x, y) ; \quad x \otimes y=x+y$ form a semiring over $\mathbb{R} \cup\{-\infty\}$.
- $x \oplus y=\log \left(e^{x}+e^{y}\right) ; x \otimes y=x+y$ form a semiring over $\mathbb{R} \cup\{-\infty\}$.

This is a very productive generalization that leads to other algorithms too:

- the boolean semiring $x \oplus y=x \vee y, x \otimes y=x \wedge y$ over $\{0,1\}$ yields an algorithm for path existence;
- there is a semiring that leads to top-k paths.

Dynamic Programming

Part 4: Sampling Paths

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Dynamic Programming

(1) Directed Acyclic Graphs
(2) Optimal Paths: The Viterbi Algorithm

3 Probabilities Over Paths: The Forward Algorithm
(4) Sampling Paths

E. Sampling Paths

Bonus goal: draw samples from the distribution over paths: $y_{1}, \ldots, y_{k} \sim \operatorname{Pr}(Y=y)$.
Motivation:

- analyze not just the most likely path, but a set of "typical" paths
- perform inferences

$$
\mathbb{E}_{\operatorname{Pr}(Y)}[F(Y)]
$$

for arbitrary functions F,

- train structured latent variable models

ED, Sampling: One Arc At A Time

Probability that the last arc of a path ending in i is j :
$\operatorname{Pr}(j i \mid y$ ends in $i)=$

ED, Sampling: One Arc At A Time

Probability that the last arc of a path ending in i is $j i$:
$\operatorname{Pr}(j i \mid y$ ends in $i)=\frac{\sum_{\left[y^{\prime} ; j i\right] \in y_{i}} \exp \left(w\left(y^{\prime}\right)+w(j i)\right)}{\sum_{y \in y_{i}} \exp (w(y))}$

E. Sampling: One Arc At A Time

Probability that the last arc of a path ending in i is $j i$:

$$
\begin{aligned}
\operatorname{Pr}(j i l y \text { ends in } i) & =\frac{\sum_{\left[y^{\prime} ; j i\right] \in y_{i}} \exp \left(w\left(y^{\prime}\right)+w(j i)\right)}{\sum_{y \in y_{i}} \exp (w(y))} \\
& =\frac{\exp (w(j i)) \sum_{y^{\prime} \in y_{j}} \exp \left(w\left(y^{\prime}\right)\right)}{\sum_{y \in y_{i}} \exp (w(y))}
\end{aligned}
$$

E. Sampling: One Arc At A Time

Probability that the last arc of a path ending in i is $j i$:

$$
\begin{aligned}
\operatorname{Pr}(j i \mid y \text { ends in } i) & =\frac{\sum_{\left[y^{\prime} ; j i\right] \in \mathcal{Y}_{i}} \exp \left(w\left(y^{\prime}\right)+w(j i)\right)}{\sum_{y \in y_{i}} \exp (w(y))} \\
& =\frac{\exp (w(j i)) \sum_{y^{\prime} \in \mathcal{Y}_{j}} \exp \left(w\left(y^{\prime}\right)\right)}{\sum_{y \in y_{i}} \exp (w(y))} \\
& =\exp \left(w(j i)+q_{j}-q_{i}\right)
\end{aligned}
$$

ED, Sampling: One Arc At A Time

Probability that the last arc of a path ending in i is $j i$:

$$
\begin{aligned}
\operatorname{Pr}(j i \mid y \text { ends in } i) & =\frac{\sum_{\left[y^{\prime} ; j i\right] \in \mathcal{Y}_{i}} \exp \left(w\left(y^{\prime}\right)+w(j i)\right)}{\sum_{y \in y_{i}} \exp (w(y))} \\
& =\frac{\exp (w(j i)) \sum_{y^{\prime} \in \mathcal{Y}_{j}} \exp \left(w\left(y^{\prime}\right)\right)}{\sum_{y \in y_{i}} \exp (w(y))} \\
& =\exp \left(w(j i)+q_{j}-q_{i}\right)
\end{aligned}
$$

All paths end in n, so draw the final arc $j n$ first.

ED, Sampling: One Arc At A Time

Probability that the last arc of a path ending in i is $j i$:

$$
\begin{aligned}
\operatorname{Pr}(j i \mid y \text { ends in } i) & =\frac{\sum_{\left[y^{\prime} ; j i\right] \in y_{i}} \exp \left(w\left(y^{\prime}\right)+w(j i)\right)}{\sum_{y \in y_{i}} \exp (w(y))} \\
& =\frac{\exp (w(j i)) \sum_{y^{\prime} \in y_{j}} \exp \left(w\left(y^{\prime}\right)\right)}{\sum_{y \in y_{i}} \exp (w(y))} \\
& =\exp \left(w(j i)+q_{j}-q_{i}\right)
\end{aligned}
$$

All paths end in n, so draw the final arc $j n$ first.
Repeat same reasoning on the subgraph with nodes $1, \ldots, j$, i.e., replace n with j and repeat until we hit 1 .

Resembles the backpointers from Viterbi: think "stochastic backpointers".

E) Sampling: One Arc At A Time

Probability that the last arc of a path ending in i is $j i$:

$$
\begin{aligned}
\operatorname{Pr}(j i \mid y \text { ends in } i) & =\frac{\sum_{\left[y^{\prime} ; j i\right] \in \mathcal{Y}_{i}} \exp \left(w\left(y^{\prime}\right)+w(j i)\right)}{\sum_{y \in y_{i}} \exp (w(y))} \\
& =\frac{\exp (w(j i)) \sum_{y^{\prime} \in y_{j}} \exp \left(w\left(y^{\prime}\right)\right)}{\sum_{y \in y_{i}} \exp (w(y))} \\
& =\exp \left(w(j i)+q_{j}-q_{i}\right)
\end{aligned}
$$

All paths end in n, so draw the final arc $j n$ first.
Repeat same reasoning on the subgraph with nodes $1, \ldots, j$, i.e., replace n with j and repeat until we hit 1.

Resembles the backpointers from Viterbi: think "stochastic backpointers".

Forward filtering, backward sampling for DAGs
input: Topologically-ordered DAG; output: y : a sample from $\operatorname{Pr}(y)$.

```
initialize \(q_{1} \leftarrow 0\)
for \(i=2, \ldots, n\) do
    \(q_{i} \leftarrow \log \sum_{j \in P_{i}} \exp \left(q_{j}+w(j i)\right)\)
\(y=[] ; i \leftarrow n\)
while \(i>1\) do
    sample \(j \in P_{i}\) w.p. \(p_{j}=\exp \left(w(j i)+q_{j}-q_{i}\right)\)
    \(y \leftarrow j i \subset y\)
    \(i \leftarrow j\)
```


Conclusions

If we can cast our problem as finding paths in a DAG, then dynamic programming (DP) lets us calculate:

- $\operatorname{argmax}_{y \in \mathcal{y}} \operatorname{score}(y)$
- $\log \sum_{y \in y} \exp \operatorname{score}(y)$ and therefore probabilities
- En samples from the distribution over structures
in linear time $\Theta(|V|+|E|)$.
Next we see a bunch of structures that fit this pattern, and some that do not.
है. Some structures solvable by DP cannot be represented via DAGs.

