Lecture 8

Dynamic Programming

Part 1: Directed Acyclic Graphs

Machine Learning for Structured Data
Vlad Niculae - LTL, UVA - https://vene.ro/mlsd

https://vene.ro/mlsd

Dynamic Programming

@ Directed Acyclic Graphs

Computations For Structures

Recall: Structured outputs are:

e discrete objects

® made of smaller parts

¢ which interact with each other and/or constrain each other,
and we must know how to compute:

® score(y)

e for prediction: argmax,cy score(y)

e forlearning: log X,y exp (score(y))

For large problems, we can’t enumerate YV (could be exponentially large).

So, we must actually make use of its structure.

Recap: Graphs

Definition 1: Weighted directed graph
A weighted directed graph is G = (V, E, w) where:
® V is the set of vertices (nodes) of G.

® E c V x Visthe set of arcs of G:
uv € E means there is an arc from node u € V tonode v € V
(u#v).
Arcs are ordered pairs, so uv # vu.

°* w: E — Risaweight function assigning a weight to each edge.

Recap: Graphs

Definition 1: Weighted directed graph
A weighted directed graph is G = (V, E, w) where:
® V is the set of vertices (nodes) of G.

® E c V x Visthe set of arcs of G:
uv € E means there is an arc from node u € V tonode v € V
(u#v).
Arcs are ordered pairs, so uv # vu.

°* w: E — Risaweight function assigning a weight to each edge.

Definition 2: Paths O & O G+l O
A path Ain G is a sequence of edges: A= eje> ... ek, with each ¢; € E,

two-by-two “linked”, i.e., if ; = u;v; and ej11 = U1 Vi1

then we must have v; = uj,1.

Recap: Graphs

Definition 1: Weighted directed graph
A weighted directed graph is G = (V, E, w) where:
® V is the set of vertices (nodes) of G.

® E c V x Visthe set of arcs of G:
uv € E means there is an arc from node u € V tonode v € V
(u#v).
Arcs are ordered pairs, so uv # vu.

°* w: E — Risaweight function assigning a weight to each edge.

Definition 2: Paths @%

A path Ain G is a sequence of edges: A= eje> ... ek, with each ¢; € E,
two-by-two “linked”, i.e., if ; = u;v; and ej11 = U1 Vi1
then we must have v; = uj,1.

The weight of a path is the sum of arc weights: w(A) = Y .cp w(e).

We denote path concatenation by AT"Ap (when legal).

Directed Acyclic Graphs

Definition 3: Cycle W

A cycle is a path ejes . .. e, Wherein the last edge e, points to the node
from which the first edge e; departs.

Directed Acyclic Graphs

Definition 3: Cycle

A cycle is a path ejes . .. e, Wherein the last edge e, points to the node
from which the first edge e; departs.

Definition 4. Directed acyclic graph (DAG)
A DAG is a directed graph that contains no cycles.

OO O20
O 6}0

Directed Acyclic Graphs

Definition 3: Cycle W

A cycle is a path ejes . .. e, Wherein the last edge e, points to the node
from which the first edge e; departs.

Definition 4. Directed acyclic graph (DAG)

A DAG is a directed graph that contains no cycles. e }6

Definition 4. Topological ordering Q
A topological ordering of a directed graph G = (V, E) is an ordering of
its nodes vy, vy, .. ., v, such that if vivj € E then/ < j.
TOs:
s,sa, b,c, t
s,b,a, c, t

G is a DAG if and only if G admits a topological ordering.

Lecture 8

Dynamic Programming

Part 2: Optimal Paths: The Viterbi Algorithm

Machine Learning for Structured Data
Vlad Niculae - LTL, UVA - https://vene.ro/mlsd

https://vene.ro/mlsd

Dynamic Programming

@ Optimal Paths: The Viterbi Algorithm

Paths In DAGs

Label nodes in topological order V = {1, ..., n}. (2)
Let V; be the set of paths starting at 1 and ending at /. Q.}a
©

Paths In DAGs

Label nodes in topological order V = {1, ..., n}.

Q\
Let V; be the set of paths starting at 1 and ending at /. Q.@ (5)

Let’s assume our space of structures is Y = Y,,.

Important things to compute:

® score(y) = w(y)
® argmax,cy, w(y)

® log2ycy, expw(y)

Paths In DAGs

Label nodes in topological order V = {1, ..., n}. (2)
Let V; be the set of paths starting at 1 and ending at /. Q.}a
Let’s assume our space of structures is Y = Y,,. ©

Important things to compute:

e score(y) = w(y)
o argmax,cy, w(y)
* log 5,cy, exp w(y)

Later, I'll show you some structured problems that can be
usefully reduced to paths in a DAG, and some that cannot.

Max-Scoring Path

® The greedy path from 1 to 5
might not be best.

e From Data Structures and Algorithms you
might recall Dijkstra’s algorithm.
® Requires no “negative cycles” — always true
for DAGs.
e Complexity: ©(|V|log |V| + |E|) with
“Fibonacci heaps”; ©(|V|?) with a
straightforward implementation. .

Max-Scoring Path

® The greedy path from 1 to 5
might not be best.

e From Data Structures and Algorithms you
might recall Dijkstra’s algorithm.
® Requires no “negative cycles” — always true
for DAGs.
e Complexity: ©(|V|log |V| + |E|) with
“Fibonacci heaps”; ©(|V|?) with a
straightforward implementation. .

® |n the case of DAGs, we can do better.

Dynamic Programming Recurrence

Q‘}G

Goal: the max weight of a path from 1 to /:

m; = maxw .
j = max (y)

Dynamic Programming Recurrence

Q‘}G

Goal: the max weight of a path from 1 to /:

m; = maxw .
j = max (y)

Define predecessorsof ias P; := {j € V : ji € E}.

Insight 1.

Any path from to / is an extension of some path
to predecessor j € P; by arc ji.

In other words: if y € Y; then y = y'~ i for some
Jj € Piand some y’ € Y.

Dynamic Programming Recurrence

O Q}G
O

Goal: the max weight of a path from 1 to /:

m; = maxw .
j = max (y)

Define predecessorsof ias P; := {j € V : ji € E}.

Insight 1.

Any path from to / is an extension of some path
to predecessor j € P; by arc ji.

In other words: if y € Y; then y = y'~ i for some
Jj € Piand some y’ € Y.

Proposition: DP recurrence for max

For any / > 1, the best path from 1 to /
is the best among the extensions of
the best path to the predecessors of i:

m; = max (mj + w(ji))
JEP;

Dynamic Programming Recurrence

(2) Proposition: DP recurrence for max
Q }e For any / > 1, the best path from 1 to /

is the best among the extensions of

e the best path to the predecessors of i:
Goal: the max weight of a path from 1 to i: mi = M (mj +w(i)
mj = max w(y).
Proof: m; := maxw(y)
Define predecessorsof ias P; := {j € V : ji € E}. ye¥:

Insight 1.

Any path from to / is an extension of some path
to predecessor j € P; by arc ji.

In other words: if y € Y; then y = y'~ i for some
Jj € Piand some y’ € Y.

Dynamic Programming Recurrence

(2) Proposition: DP recurrence for max
Q }e For any / > 1, the best path from 1 to /

is the best among the extensions of

e the best path to the predecessors of i:
Goal: the max weight of a path from 1 to /: mi = Sneap),((mj +w(i)
m; = max w(y).
Proof: m; := maxw(y)
Define predecessorsof ias P; := {j € V : ji € E}. ye¥:
= max max (w(y)+ w(ji))
Insight 1. JjePj y'e

Any path from to / is an extension of some path
to predecessor j € P; by arc ji.

In other words: if y € Y; then y = y'~ i for some
Jj € Piand some y’ € Y.

Dynamic Programming Recurrence

(2) Proposition: DP recurrence for max
Q }e For any / > 1, the best path from 1 to /

is the best among the extensions of

e the best path to the predecessors of i:
Goal: the max weight of a path from 1 to /: mi = Sneap),((mj +w(i)
m; = max w(y).
Proof: m; := maxw(y)
Define predecessorsof ias P; := {j € V : ji € E}. ye¥:
= max max (w(y)+ w(ji))
Insight 1. JjePj y'e

Any path from to i is an extension of some path = max maX(W(y)) + w(ji)
to predecessor j € P; by arc ji. JjePi \y' e,

In other words: if y € Y; then y = y'~ i for some
Jj € Piand some y’ € Y.

Dynamic Programming Recurrence

(2) Proposition: DP recurrence for max
Q }e For any / > 1, the best path from 1 to /

is the best among the extensions of

e the best path to the predecessors of i:
Goal: the max weight of a path from 1 to /: mi = Sneap),((mj +w(i)
m; = max w(y).
Proof: m; := maxw(y)
Define predecessorsof ias P; := {j € V : ji € E}. ye¥:
= max max (w(y)+ w(ji))
Insight 1. JjePj y'e

Any path from to i is an extension of some path = max maX(W(y)) + w(ji)
to predecessor j € P; by arc ji. JjePi \y' e,

In other words: if y € V; then y = y’~ji for some = Sneé,’,x (mj +w(ji) .
Jj € Piand some y’ € Y.

The Viterbi Algorithm

m; = maxjep, (m; + w(ji)) holds for any graph;
but we would chase our own tail forever.

The Viterbi Algorithm

m; = maxjep, (m; + w(ji)) holds for any graph;
but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from
1 to / must only contain nodes j < i.

(So, we may compute mq, ..., m, in order.)

The Viterbi Algorithm

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
G=(V,E,w),V={1,...,n}

m; = maxjep, (m; + w(ji)) holds for any graph; initialize m; « 0
but we would chase our own tail forever. fori=2,...,ndo

. . + "
Insight 2. M= mE (mj +w(iD)

In a topologically-ordered DAG, any path from
1 to / must only contain nodes j < i.

(So, we may compute mq, ..., m, in order.)

output: maximum path weights mq, ...

The Viterbi Algorithm

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
G=(V,E,w),V={1,...,n}

m; = maxjep, (m; + w(ji)) holds for any graph; initialize m; « 0

but we would chase our own tail forever. fori=2,...,ndo
. . + i

Insight 2. M= mE (mj +w(iD)

In a topologically-ordered DAG, any path from

1 to / must only contain nodes j < i.

(So, we may compute mq, ..., m, in order.)

Insight 3.

A path acheiving maximal weight is made up of
the edges j*i, where j* is the node selected by
the max at each iteration.

output: maximum path weights my, ..

., mp.

The Viterbi Algorithm

m; = maxjep, (m; + w(ji)) holds for any graph;
but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from
1 to / must only contain nodes j < i.

(So, we may compute mq, ..., m, in order.)

Insight 3.

A path acheiving maximal weight is made up of
the edges j*i, where j* is the node selected by
the max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
G=(V,E,w),V={1,...,n}
output: maximum path weights my, ..., mp.

initialize m; « 0
fori=2,...,ndo
m; «— max (mj + w(ji))
jEP,‘

7 « arg max (m; + w(ji))
JeP;i

Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
y=I[Lien
while / > 1 do
yemity

i<—71','

The Viterbi Algorithm

m; = maxjep, (m; + w(ji)) holds for any graph;
but we would chase our own tail forever.

Insight 2.

In a topologically-ordered DAG, any path from
1 to / must only contain nodes j < i.

(So, we may compute mq, ..., m, in order.)

Insight 3.

A path acheiving maximal weight is made up of
the edges j*i, where j* is the node selected by
the max at each iteration.

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
G=(V,E,w),V={1,...,n}
output: maximum path weights my, ..., mp.

initialize m; « 0
fori=2,...,ndo
m; «— max (mj + w(ji))
jEP,‘
7 « arg max (m; + w(ji))
JeP;

Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
y=I[Lien
while / > 1 do
yemity

i<—71','

Complexity: ©(| V| + |E|).

The Viterbi Algorithm

General Viterbi algorithm for DAGs

input: Topologically-ordered DAG
G=(V,E,w),V={1,...,n}
output: maximum path weights my, ..., mp.

initialize m; « 0
fori=2,...,ndo
m; « max (m; + w(ji))
JEP;

7 « argmax (m; + w(ji))
JeP;i

Reconstruct path: follow backpointers
output: optimal path y from 1 to n (optional)
y=I[Lien
while / > 1 do
yemity

i<—71','

Complexity: ©(| V| + | E|).

Lecture 8

Dynamic Programming

Part 3: Probabilities Over Paths: The Forward Algorithm

Machine Learning for Structured Data
Vlad Niculae - LTL, UVA - https://vene.ro/mlsd

https://vene.ro/mlsd

Dynamic Programming

@ Probabilities Over Paths: The Forward Algorithm

Probability Distributions

A weighted DAG induces a probability distributions
over all paths from 1 to n:

exp(w(y))
P =
=S e ()

y w(y) exp(w(y)) Pr(y)

1-2->5
1-2—-4-5
1-3—-4->5

To assess Pr(y) even for a single path, the
denominator sums over all paths.

Next goal: calculate this denominator efficiently.

Probability Distributions

A weighted DAG induces a probability distributions
over all paths from 1 to n:

exp(w(y))
P =
=S e ()

y w(y) exp(w(y)) Pr(y)

1-52-55 10+20 =30
1525455 10-5+10=15
153545 154+40+10=25

To assess Pr(y) even for a single path, the
denominator sums over all paths.

Next goal: calculate this denominator efficiently.

Probability Distributions

A weighted DAG induces a probability distributions
over all paths from 1 to n:

exp(w(y))
P =
)= s W)
y w(y) exp(w(y)) Pr(y)
15255 10+20 =30 1.1-1013

152—>54-55 10-5+10=15 3.3-10°
1535455 15+0+10=25 7.2-10%°

To assess Pr(y) even for a single path, the
denominator sums over all paths.

Next goal: calculate this denominator efficiently.

Probability Distributions

A weighted DAG induces a probability distributions
over all paths from 1 to n:

exp(w(y))
P =
)= s W)
y w(y) exp(w(y)) Pr(y)
15255 10+20 = 30 1.1-1013 9930

152—>54-55 10-5+10=15 3.3-10° .0001
1535455 15+40+10=25 7.2-101° 0069

To assess Pr(y) even for a single path, the
denominator sums over all paths.

Next goal: calculate this denominator efficiently.

Log-Probability DP Recurrence

Since exp w(y) can be huge, it's better to work
with log-probabilities:

log Pr(y) = w(y) - log Z expw(y’)
v'ey,

so we aim to compute this log-sum-exp directly.

Log-Probability DP Recurrence

Since exp w(y) can be huge, it's better to work
with log-probabilities:

log Pr(y) = w(y) —log) expw(y’)
v'ey,
so we aim to compute this log-sum-exp directly.
Insight 1 (from before).

If y € Y; then y = y’~ji for some j € P;
and some y’ € Y.

Log-Probability DP Recurrence

Since exp w(y) can be huge, it's better to work
with log-probabilities:

log Pr(y) = w(y) - log Z expw(y’)
v'ey,

so we aim to compute this log-sum-exp directly.
Insight 1 (from before).

If y € Y; then y = y’~ji for some j € P;

and some y’ € Y.

Insight 4: addition distributes over log-sum-exp.

¢+ log Z exp(z;) = log Z exp(c+ z)
i i

Log-Probability DP Recurrence

Since exp w(y) can be huge, it's better to work
with log-probabilities:

log Pr(y) = w(y) - log Z expw(y’)
v'ey,

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If y € Y; then y = y’~ji for some j € P;
and some y’ € Y.

Insight 4: addition distributes over log-sum-exp.

¢+ log Z exp(z;) = log Z exp(c+ z)
i i

Denote g; := log 3\, c v, exp(w(y)).

Proposition: DP recurrence for log-sum-exp.

q; = log Z exp (qj + w(ji))

JEP;

Compare with the DP recurrence for max:

m; = max(m; + w(ji)).
= max(m; + w(ji)

Log-Probability DP Recurrence

Since exp w(y) can be huge, it's better to work
with log-probabilities:

log Pr(y) = w(y) - log Z expw(y’)
v'ey,

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If y € Y; then y = y’~ji for some j € P;
and some y’ € Y.

Insight 4: addition distributes over log-sum-exp.

¢+ log Z exp(z;) = log Z exp(c+ z)
i i

Denote g; := log 3\, c v, exp(w(y)).

Proposition: DP recurrence for log-sum-exp.

q; = log Z exp (qj + w(ji))

JjePi
Compare with the DP recurrence for max:
m; = max(m; + w(ji)).
j = max(m; +w(ji)

Proof: g; = log Z Z exp (w(y) +w(ji)

JjeP; y'E%

Log-Probability DP Recurrence

Since exp w(y) can be huge, it's better to work
with log-probabilities:

log Pr(y) = w(y) - log Z expw(y’)
v'ey,

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If y € Y; then y = y’~ji for some j € P;
and some y’ € Y.

Insight 4: addition distributes over log-sum-exp.

¢+ log Z exp(z;) = log Z exp(c+ z)
i i

Denote g; := log 3\, c v, exp(w(y)).

Proposition: DP recurrence for log-sum-exp.

q; = log Z exp (qj + w(ji))

JjePi
Compare with the DP recurrence for max:
m; = max(m; + w(ji)).
j = max(m; +w(ji)

Proof: g; = log Z Z exp (w(y) +w(ji)

JjeP; y'E%

=log) expllog) exp(w(y')+wji)

jeP; ey

Log-Probability DP Recurrence

Since exp w(y) can be huge, it's better to work
with log-probabilities:

log Pr(y) = w(y) - log Z expw(y’)
v'ey,

so we aim to compute this log-sum-exp directly.

Insight 1 (from before).

If y € Y; then y = y’~ji for some j € P;
and some y’ € Y.

Insight 4: addition distributes over log-sum-exp.

¢+ log Z exp(z;) = log Z exp(c+ z)
i i

Denote g; := log 3\, c v, exp(w(y)).
Proposition: DP recurrence for log-sum-exp.

q; = log Z exp (qj + w(ji))

JEP;

Compare with the DP recurrence for max:

m; = max(m; + w(ji)).
= max(m; + w(ji)

Proof: g; = log Z Z exp (w(y) +w(ji)

JjePiy’eY;
=log) exp|log) exp(w(y’)) +w(i)
JjeP; y'eY;

= log Z exp (gj + w(ji)) .

JeP;

The Forward Algorithm

General forward algorithm for DAGs

input: Topologically-ordered DAG
G=(V,E,w),V={1,...,n}
output: g, := log X, c y, exp w(y).

initialize g1 < 0

fori=2,...,ndo
qj «— log Z exp (qgj + w(ji))
JjeP;

Complexity: ©(| V| + |E|).

Lets us calculate the log-probability of any
given sequence log Pr(y).

Can use autodiff to get V,, log Pr(y).

‘5), Spot A Pattern?

Why are these two algorithms so similar?

Deriving the DP recurrences was almost identical.

{,), Spot A Pattern?

Why are these two algorithms so similar?
Deriving the DP recurrences was almost identical.
The pattern:
* x®y=max(x,y); x®y=x+y forma semiring over R U {—co}.

°* x®y=log(eX+e¥); x®y = x+y form a semiring over R U {—c0}.

{,), Spot A Pattern?

Why are these two algorithms so similar?
Deriving the DP recurrences was almost identical.
The pattern:
* x®y=max(x,y); x®y=x+yformasemiringover RU {—co}.
°* x®y=log(eX+e¥); x®y = x+y form a semiring over R U {—c0}.
This is a very productive generalization that leads to other algorithms too:

¢ the boolean semiringx®y =xVy,x®y =x A yover {0,1}
yields an algorithm for path existence;

e there is a semiring that leads to top-k paths.

Lecture 8

Dynamic Programming

Part 4: Sampling Paths

Machine Learning for Structured Data
Vlad Niculae - LTL, UVA - https://vene.ro/mlsd

https://vene.ro/mlsd

Dynamic Programming

@ Sampling Paths

‘5), Sampling Paths

Bonus goal: draw samples from the distribution over paths: y1, ..., yx ~ Pr(Y = y).
Motivation:
e analyze not just the most likely path, but a set of “typical” paths

¢ perform inferences
Epr(v)[F(Y)]

for arbitrary functions F,

¢ train structured latent variable models

‘!}), Sampling: One Arc At A Time

Probability that the last arc
of a path ending in i is ji:

Pr(jily endsin i) =

5), Sampling: One Arc At A Time

Probability that the last arc
of a path ending in i is ji:

Siyjiey; exp(w(y’) + w(ji)
Zyey; exp(w(y))

Pr(jily endsin i) =

‘5), Sampling: One Arc At A Time

Probability that the last arc
of a path ending in i is ji:

Siyjiey; exp(w(y’) + w(ji)
Yyey. exp(w(y))
eXP(WU"))ZyEyj exp(w(y’))
Yyey; exp(w(y))

Pr(jily endsin i) =

21/00

‘5), Sampling: One Arc At A Time

Probability that the last arc
of a path ending in i is ji:

Siyjiey; exp(w(y’) + w(ji)
Yyey exp(w(y))
eXP(W(J'I'))Zy/Eyj exp(w(y’))
Lyey, exp(w(y))

=exp(w(ji) +q; - q;)

Pr(jily endsin i) =

21/00

‘5), Sampling: One Arc At A Time

Probability that the last arc
of a path ending in i is ji:

Siyjiey; exp(w(y’) + w(ji)
Yyey exp(w(y))
eXP(W(J'I'))Zy/Eyj exp(w(y’))
Lyey, exp(w(y))

=exp(w(ji) +q; - q;)

Pr(jily endsin i) =

All paths end in n, so draw the final arc jn first.

21/00

‘5), Sampling: One Arc At A Time

Probability that the last arc
of a path ending in i is ji:

Siyjiey; exp(w(y’) + w(ji)
Yyey exp(w(y))
eXP(W(J'I'))Zy/Eyj exp(w(y’))
Yyey; exp(w(y))

=exp(w(ji) +q; - q;)

Pr(jily endsin i) =

All paths end in n, so draw the final arc jn first.

Repeat same reasoning on the subgraph with
nodes 1,...,J,i.e., replace n with j and repeat
until we hit 1.

Resembles the backpointers from Viterbi:
think “stochastic backpointers”.

21/00

5), Sampling: One Arc At A Time

Probability that the last arc
of a path ending in i is ji:

Pr(jily endsin i) =

Siyjiey; exp(w(y’) + w(ji)

2Zyey, exp(w(y))

exp(W(ii) T, .y exp(w(y)

Yyey; exp(w(y))
=exp(w(ji) +q; = q;)

All paths end in n, so draw the final arc jn first.

Repeat same reasoning on the subgraph with
nodes 1,...,J,i.e., replace n with j and repeat
until we hit 1.

Resembles the backpointers from Viterbi:
think “stochastic backpointers”.

Forward filtering, backward sampling for DAGs

input: Topologically-ordered DAG;
output: y: a sample from Pr(y).

initialize g1 < 0
fori=2,...,ndo
qi < log Xjcp, exp (q; + w(ji))

y=Iien

while i > 1 do
sample j € P; w.p. p; = exp(w(ji) + q; — q;)
y—Jji"y
1 (—J

Conclusions

If we can cast our problem as finding paths in a DAG, then dynamic programming
(DP) lets us calculate:

® argmax, y score(y)

* log X, cy expscore(y) and therefore probabilities

o 5& samples from the distribution over structures
in linear time ©(| V| + | E)).
Next we see a bunch of structures that fit this pattern, and some that do not.

5), Some structures solvable by DP cannot be represented via DAGs.

	Directed Acyclic Graphs
	Optimal Paths: The Viterbi Algorithm
	Probabilities Over Paths: The Forward Algorithm
	Sampling Paths

