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So far, we’ve studied this scenario:

• Structured inputs
• Familiar unstructured outputs:
classification / regression.
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In the next part of class,
we study structured outputs.
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Reminder: Kinds of Structure

Sequence Grid Graph

Alignments Permutations Hierarchy
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Structured outputs are:
• discrete objects
• made of smaller parts
• which interact with each other and/or constrain each other.

Example: What are the possible ways to assign 4 jockeys to 4 horses?

Y = {(1, 2, 3, 4),
(1, 2, 4, 3),
(1, 3, 2, 4),
. . . ,

(4, 3, 2, 1)}

We can’t just predict the best jockey for each horse, or the best horse for each
jockey, since we might end up with double assignments.
What is |Y|?
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Recap: Logistic Regression and Perceptron Losses
The two losses we’ve seen for multi-class classification:
(changing notation slightly)

LLR(y ) = − log Pr(Y = y |x) = − score(y ) + log
∑
y ′∈Y

exp (score(y ′))

LPerc(y ) = − score(y ) + max
y ′∈Y

score(y ′)

For classification:

• we had Y = {1, 2, . . . ,K }

• the model (linear or NN) outputs a vector a of scores for each class, so
score(y ) = ay .

Can we generalize this to structured Y?
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Probabilistic Models of Structures

Our model must be able to assign a score
to every possible structure, score(y ; x, θ).
For brevity we just write score(y ), but
remember it depends on input and
params.

From this, we can get a probability
distribution over possible structures:

Pr(y | x) = exp (score(y ))∑
y ′∈Y exp (score(y ′))
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Modelling challenges

Essential computational prerequisites:

• score(y )

• for prediction: argmaxy ∈Y score(y )

• for learning: log
∑

y ∈Y exp (score(y ))

The challenges: unlike multi-class classification,

• Y can vary for each data point (e.g., with n. horses)

• |Y| can get very large: we can’t just for-loop over it.

Generally intractable!
But, for certain structures and scoring functions, efficient algorithms exist.
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The Road Ahead
In the rest of the class, we shall cover a wide range of structured output tasks:

• Sequence labelling
• Sequence segmentation
• Alignments between sequences;
• Assignments and permutations
• Grid / graph labelling

While there is no general-purpose structure prediction algorithm, we shall learn
three main tools that will get you far:

• Dynamic programming
• Integer linear programming
• Gibbs sampling
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