
Machine Learning for Structured DataVlad Niculae · LTL, UvA · https://vene.ro/mlsd

Attention & Transformers

Part 1: Pooling: Fixed vs. Adaptive

Lecture 6

https://vene.ro/mlsd

Attention & Transformers

1 Pooling: Fixed vs. Adaptive

2 Hierarchical Attention

3 Self-Attention

4 Transformers

2/∞

Let’s talk about pooling.

z = AveragePool(z1, . . . , zn) :=
1
n

n∑
j=1

z i

Used to get one representation of a variable-size set or sequence.
Combine n input vectors into one single output vector,with equal contribution.

But what if some of the inputs should contribute more than others?

3/∞

Let’s talk about pooling.

z = AveragePool(z1, . . . , zn) :=
1
n

n∑
j=1

z i

Used to get one representation of a variable-size set or sequence.
Combine n input vectors into one single output vector,with equal contribution.
But what if some of the inputs should contribute more than others?

3/∞

Weighted Average Pooling

z =
∑
i

αiz i , where αi ≥ 0,
∑
i

αi = 1

.2

.2

.2

.2

.2

.01

.02

.01

.95

.01

The weights α control the relative importance of the inputs.

But how to come up with these weights?How to decide what’s important in a given context?

4/∞

Weighted Average Pooling

z =
∑
i

αiz i , where αi ≥ 0,
∑
i

αi = 1

.2

.2

.2

.2

.2

.01

.02

.01

.95

.01

The weights α control the relative importance of the inputs.
But how to come up with these weights?How to decide what’s important in a given context?

4/∞

Attention
Key idea: have a representation of the “context” as a vector q ∈ Òd .
Then, say the importance of z i is proportional to its alignment (∼ angle) to q:

αi =
exp(q · z i)∑
j exp(q · z j)︸ ︷︷ ︸

[softmax ([q ·z1,...,q ·zn])] i

; Attn(q; z1, . . . , zn) :=
∑
i

αiz i .

This is the basic attention mechanism:
Pool a bunch of vectors, with varying weights,depending on how aligned they are with a context.
What could be the context?

• Could be just a static learned parameter.
• If training on multiple tasks or domains, q can be an embedding of the domain.
• In machine translation (say EN→NL), z i are the EN words,

q can be an embedding of the last NL word predicted (one by one).

5/∞

Attention
Key idea: have a representation of the “context” as a vector q ∈ Òd .
Then, say the importance of z i is proportional to its alignment (∼ angle) to q:

αi =
exp(q · z i)∑
j exp(q · z j)︸ ︷︷ ︸

[softmax ([q ·z1,...,q ·zn])] i

; Attn(q; z1, . . . , zn) :=
∑
i

αiz i .

This is the basic attention mechanism:
Pool a bunch of vectors, with varying weights,depending on how aligned they are with a context.

What could be the context?
• Could be just a static learned parameter.
• If training on multiple tasks or domains, q can be an embedding of the domain.
• In machine translation (say EN→NL), z i are the EN words,

q can be an embedding of the last NL word predicted (one by one).

5/∞

Attention
Key idea: have a representation of the “context” as a vector q ∈ Òd .
Then, say the importance of z i is proportional to its alignment (∼ angle) to q:

αi =
exp(q · z i)∑
j exp(q · z j)︸ ︷︷ ︸

[softmax ([q ·z1,...,q ·zn])] i

; Attn(q; z1, . . . , zn) :=
∑
i

αiz i .

This is the basic attention mechanism:
Pool a bunch of vectors, with varying weights,depending on how aligned they are with a context.
What could be the context?

• Could be just a static learned parameter.
• If training on multiple tasks or domains, q can be an embedding of the domain.
• In machine translation (say EN→NL), z i are the EN words,

q can be an embedding of the last NL word predicted (one by one).
5/∞

Attention In Math And Code

αi =
exp(q · z i)∑
j exp(q · z j)︸ ︷︷ ︸

[softmax ([q ·z1,...,q ·zn])] i

z =
∑
i

αiz i

words = [21, 79, 14] # indices
emb = Embedding(vocab_sz, dim)
optionally add RNN, CNN, whatever

Z = emb(words) # (3 × dim)

q = randn(dim) # (random context)

s = Z @ q
[-.3, -1.0, 1.8]

alpha = softmax(s, dim=0)
[.10, .05, .85]

z = alpha @ Z # (dim)

6/∞

Attention and Expressivity

Attention by itself doesn’t make a model more expressive: intuitively, all the same“information” is there in a uniform average too.
But it provides a sort of “shortcut”: it makes it easier to represent useful functions.

7/∞

Machine Learning for Structured DataVlad Niculae · LTL, UvA · https://vene.ro/mlsd

Attention & Transformers

Part 2: Hierarchical Attention

Lecture 6

https://vene.ro/mlsd

Attention & Transformers

1 Pooling: Fixed vs. Adaptive

2 Hierarchical Attention

3 Self-Attention

4 Transformers

9/∞

Hierarchical Attention

Encode and pool each sentence separately, then repeat over the sentence vectors.

A great movie. Very fun. Don’t miss it!

10/∞

Hierarchical Attention

Encode and pool each sentence separately, then repeat over the sentence vectors.

A great movie. Very fun. Don’t miss it!

10/∞

Machine Learning for Structured DataVlad Niculae · LTL, UvA · https://vene.ro/mlsd

Attention & Transformers

Part 2: Hierarchical Attention

Lecture 6

https://vene.ro/mlsd

Machine Learning for Structured DataVlad Niculae · LTL, UvA · https://vene.ro/mlsd

Attention & Transformers

Part 3: Self-Attention

Lecture 6

https://vene.ro/mlsd

Attention & Transformers

1 Pooling: Fixed vs. Adaptive

2 Hierarchical Attention

3 Self-Attention

4 Transformers

13/∞

Key-Value Attention

Attention resembles set lookup:
Soft lookup (attention):

sj = q · z j

α = softmax(s)

return
∑

i αiz i

Hard set lookup (by similarity):
sj = q · z j

i = argmax(s)

return z i

How about a dictionary lookup? If wehave key-value pairs (k i , v i),

sj = q · k j

α = softmax(s)

return
∑

i αiv i

If we only have item embeddings
z1, . . . , zn, we can learn a key/value“views”:

k i = W ⊤
Kz i

v i = W ⊤
V z i

14/∞

Key-Value Attention

Attention resembles set lookup:
Soft lookup (attention):

sj = q · z j

α = softmax(s)

return
∑

i αiz i

Hard set lookup (by similarity):
sj = q · z j

i = argmax(s)

return z i

How about a dictionary lookup? If wehave key-value pairs (k i , v i),

sj = q · k j

α = softmax(s)

return
∑

i αiv i

If we only have item embeddings
z1, . . . , zn, we can learn a key/value“views”:

k i = W ⊤
Kz i

v i = W ⊤
V z i

14/∞

Key-Value Attention

Attention resembles set lookup:
Soft lookup (attention):

sj = q · z j

α = softmax(s)

return
∑

i αiz i

Hard set lookup (by similarity):
sj = q · z j

i = argmax(s)

return z i

How about a dictionary lookup? If wehave key-value pairs (k i , v i),
sj = q · k j

α = softmax(s)

return
∑

i αiv i

If we only have item embeddings
z1, . . . , zn, we can learn a key/value“views”:

k i = W ⊤
Kz i

v i = W ⊤
V z i

14/∞

Key-Value Attention

Attention resembles set lookup:
Soft lookup (attention):

sj = q · z j

α = softmax(s)

return
∑

i αiz i

Hard set lookup (by similarity):
sj = q · z j

i = argmax(s)

return z i

How about a dictionary lookup? If wehave key-value pairs (k i , v i),
sj = q · k j

α = softmax(s)

return
∑

i αiv i

If we only have item embeddings
z1, . . . , zn, we can learn a key/value“views”:

k i = W ⊤
Kz i

v i = W ⊤
V z i

14/∞

Self-Attention

The bears eat the pretty ones

z_out = []

K = Z @ Wk # (n x dim)
V = Z @ Wv # (n x dim)
Q = Z @ Wq # (n x dim)

for i in range(n):
zi = softmax(K @ Q[i]) @ V
z_out.append(zi)

z = cat(zms)

Can we represent an item (word) as acombination of items relevant to it? (i.e.,the item is itself the context)
If we had K = V = Q = Z we wouldalways retrieve the item itself.

Attention at each position isindependent and parallel. What happensif we permute the inputs?
The outputs just get permuted the sameway! (equivariance).
So, by default, self-attention is unaware
of sequential order. (Unlike CNN orRNN encoders!)

15/∞

Self-Attention

The bears eat the pretty ones

z_out = []

K = Z @ Wk # (n x dim)
V = Z @ Wv # (n x dim)
Q = Z @ Wq # (n x dim)

for i in range(n):
zi = softmax(K @ Q[i]) @ V
z_out.append(zi)

z = cat(zms)

Can we represent an item (word) as acombination of items relevant to it? (i.e.,the item is itself the context)
If we had K = V = Q = Z we wouldalways retrieve the item itself.

Attention at each position isindependent and parallel. What happensif we permute the inputs?
The outputs just get permuted the sameway! (equivariance).
So, by default, self-attention is unaware
of sequential order. (Unlike CNN orRNN encoders!)

15/∞

Self-Attention

The bears eat the pretty ones

z_out = []

K = Z @ Wk # (n x dim)
V = Z @ Wv # (n x dim)
Q = Z @ Wq # (n x dim)

for i in range(n):
zi = softmax(K @ Q[i]) @ V
z_out.append(zi)

z = cat(zms)

Can we represent an item (word) as acombination of items relevant to it? (i.e.,the item is itself the context)
If we had K = V = Q = Z we wouldalways retrieve the item itself.
Attention at each position isindependent and parallel. What happensif we permute the inputs?

The outputs just get permuted the sameway! (equivariance).
So, by default, self-attention is unaware
of sequential order. (Unlike CNN orRNN encoders!)

15/∞

Self-Attention

The bears eat the pretty ones

z_out = []

K = Z @ Wk # (n x dim)
V = Z @ Wv # (n x dim)
Q = Z @ Wq # (n x dim)

for i in range(n):
zi = softmax(K @ Q[i]) @ V
z_out.append(zi)

z = cat(zms)

Can we represent an item (word) as acombination of items relevant to it? (i.e.,the item is itself the context)
If we had K = V = Q = Z we wouldalways retrieve the item itself.
Attention at each position isindependent and parallel. What happensif we permute the inputs?
The outputs just get permuted the sameway! (equivariance).

So, by default, self-attention is unaware
of sequential order. (Unlike CNN orRNN encoders!)

15/∞

Self-Attention

The bears eat the pretty ones

z_out = []

K = Z @ Wk # (n x dim)
V = Z @ Wv # (n x dim)
Q = Z @ Wq # (n x dim)

for i in range(n):
zi = softmax(K @ Q[i]) @ V
z_out.append(zi)

z = cat(zms)

Can we represent an item (word) as acombination of items relevant to it? (i.e.,the item is itself the context)
If we had K = V = Q = Z we wouldalways retrieve the item itself.
Attention at each position isindependent and parallel. What happensif we permute the inputs?
The outputs just get permuted the sameway! (equivariance).
So, by default, self-attention is unaware
of sequential order. (Unlike CNN orRNN encoders!)

15/∞

Self-Attention for Sequences: Positional Embeddings

i drink the drink

fixed sinusoidal embeddings:

0 20 40 60 80 100 120
dim

0

20

40

60

se
qu

en
ce

 le
ng

th

1.0

0.5

0.0

0.5

1.0

Add to each input vector an “offset” vector thatencodes (only) the position in the sequence.
z̃ i = z i + pi

Output now depends on the order: if permuting by σ ,
z̃ i = zσ (i) + pi .
Positional embeddings can be
1. fixed: e.g., based on trig functions of i .
2. learned: i.e., a separate

torch.nn.Embedding(num_embeddings=max_len)through which we embed the sequence ofposition indices (0, 1, 2, . . . , n − 1).
(2) is easier to code, but (1) can generalize tosequences seen in training, due to its fixed pattern.

16/∞

Self-Attention for Sequences: Positional Embeddings

i drink the drink

fixed sinusoidal embeddings:

0 20 40 60 80 100 120
dim

0

20

40

60

se
qu

en
ce

 le
ng

th

1.0

0.5

0.0

0.5

1.0

Add to each input vector an “offset” vector thatencodes (only) the position in the sequence.
z̃ i = z i + pi

Output now depends on the order: if permuting by σ ,
z̃ i = zσ (i) + pi .

Positional embeddings can be
1. fixed: e.g., based on trig functions of i .
2. learned: i.e., a separate

torch.nn.Embedding(num_embeddings=max_len)through which we embed the sequence ofposition indices (0, 1, 2, . . . , n − 1).
(2) is easier to code, but (1) can generalize tosequences seen in training, due to its fixed pattern.

16/∞

Self-Attention for Sequences: Positional Embeddings

i drink the drink

fixed sinusoidal embeddings:

0 20 40 60 80 100 120
dim

0

20

40

60

se
qu

en
ce

 le
ng

th

1.0

0.5

0.0

0.5

1.0

Add to each input vector an “offset” vector thatencodes (only) the position in the sequence.
z̃ i = z i + pi

Output now depends on the order: if permuting by σ ,
z̃ i = zσ (i) + pi .
Positional embeddings can be
1. fixed: e.g., based on trig functions of i .
2. learned: i.e., a separate

torch.nn.Embedding(num_embeddings=max_len)through which we embed the sequence ofposition indices (0, 1, 2, . . . , n − 1).

(2) is easier to code, but (1) can generalize tosequences seen in training, due to its fixed pattern.

16/∞

Self-Attention for Sequences: Positional Embeddings

i drink the drink

fixed sinusoidal embeddings:

0 20 40 60 80 100 120
dim

0

20

40

60

se
qu

en
ce

 le
ng

th

1.0

0.5

0.0

0.5

1.0

Add to each input vector an “offset” vector thatencodes (only) the position in the sequence.
z̃ i = z i + pi

Output now depends on the order: if permuting by σ ,
z̃ i = zσ (i) + pi .
Positional embeddings can be
1. fixed: e.g., based on trig functions of i .
2. learned: i.e., a separate

torch.nn.Embedding(num_embeddings=max_len)through which we embed the sequence ofposition indices (0, 1, 2, . . . , n − 1).
(2) is easier to code, but (1) can generalize tosequences seen in training, due to its fixed pattern.

16/∞

Self-Attention for Graphs

But hey: maybe permutationequivariance is sometimes a good thing!
For instance, for graph neural networks!
Remember in GNN we computed themessage from neighbors as a sum:

mi =
∑

j∈N (i)
z i

Instead, self-attention over neighbors:
αij =

exp(q i · k j)∑
j ′∈N (i) exp(q i · k j ′)

mi =
∑

j∈N (i)
αijv j

In other words: self-attentionconstrained by the adjacencystructure
(no attention allowed where there isno edge)
Ethylene (C2H4): C

H

H
C

H

H

H H C C H H

17/∞

Self-Attention for Graphs

But hey: maybe permutationequivariance is sometimes a good thing!
For instance, for graph neural networks!
Remember in GNN we computed themessage from neighbors as a sum:

mi =
∑

j∈N (i)
z i

Instead, self-attention over neighbors:
αij =

exp(q i · k j)∑
j ′∈N (i) exp(q i · k j ′)

mi =
∑

j∈N (i)
αijv j

In other words: self-attentionconstrained by the adjacencystructure
(no attention allowed where there isno edge)
Ethylene (C2H4): C

H

H
C

H

H

H H C C H H

17/∞

Self-Attention for Graphs

But hey: maybe permutationequivariance is sometimes a good thing!
For instance, for graph neural networks!
Remember in GNN we computed themessage from neighbors as a sum:

mi =
∑

j∈N (i)
z i

Instead, self-attention over neighbors:
αij =

exp(q i · k j)∑
j ′∈N (i) exp(q i · k j ′)

mi =
∑

j∈N (i)
αijv j

In other words: self-attentionconstrained by the adjacencystructure
(no attention allowed where there isno edge)
Ethylene (C2H4): C

H

H
C

H

H

H H C C H H

17/∞

Machine Learning for Structured DataVlad Niculae · LTL, UvA · https://vene.ro/mlsd

Attention & Transformers

Part 4: Transformers

Lecture 6

https://vene.ro/mlsd

Attention & Transformers

1 Pooling: Fixed vs. Adaptive

2 Hierarchical Attention

3 Self-Attention

4 Transformers

19/∞

Multi-Head Attention
Apply attentionM times, independently, with different linear transformations togive different keys/vals/queries.

k (m)
i

= W (m)
K

⊤
z i

v (m)
i

= W (m)
V

⊤
z i

q (m) = W (m)
Q

⊤
q

z (m) = KeyValAttn(q, k (m)
1,...,n, v

(m)
1,...,n)

and concatenate the outputs:
z = [z (1) , . . . , z (M)]

Intuition: learnM different ways to look at the same set.
20/∞

Multi-Head Attention In Code

k (m)
i

= W (m)
K

⊤
z i

v (m)
i

= W (m)
V

⊤
v i

q (m) = W (m)
Q

⊤
q

z (m) = KeyValAttn(q, k (m)
1,...,n, v

(m)
1,...,n)

z = [z (1) , . . . , z (M)]

zms = []

for m in range(M):
Km = Z @ Wk[m]
Vm = Z @ Wv[m]
qm = q @ Wq[m]

zm = softmax(Km @ qm) @ Vm
zms.append(zm)

z = cat(zms)

21/∞

Transformer
Stacked multi-head attention (+ some annoying details like LayerNorm)

The bears eat the pretty ones

• Combines some of thestrengths of CNN and RNN:
• Global even without muchdepth: every outputdepends on every input.
• Parallelizable: each positionand each head can becomputed separately.(still one layer at a time)
• Sequence-aware thanks topositional embeddings.

Vision Transformer (ViT)

Source: Google blog https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html©Dosovitskiy, Houlsby, Weissenborn, et al.
23/∞

https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html

Wrapping Up

• Transformers are very popular right now. Important to understand why.
• All things being equal, my (and my friends’) experience is that they are harder
to train than RNNs and CNNs.

• But their parallelizable nature lets them make best use of today’s bestsupercomputing hardware!
• It’s not that two Transformer layers > two GRU layers.But, we can train deeper Transformers faster and longer (on more data),and currently this looks like the better trade-off.This will probably change!

24/∞

	Pooling: Fixed vs. Adaptive
	Hierarchical Attention
	Self-Attention
	Transformers

