Lecture 6

Attention & Transformers

Part 1: Pooling: Fixed vs. Adaptive

Machine Learning for Structured Data
Vlad Niculae - LTL, UVA - https://vene.ro/mlsd

https://vene.ro/mlsd

Attention & Transformers

@ Pooling: Fixed vs. Adaptive

Let’s talk about pooling.

1 n
z = AveragePool(zy,...,z,) = — Z Z;
n =

000

000 000
000 000 oooz:::aooo
000 [eYeYe

000

Used to get one representation of a variable-size set or sequence.

Combine n input vectors into one single output vector,
with equal contribution.

Let’s talk about pooling.

1 n
z = AveragePool(zy,...,z,) = — Z Z;
n =

000

000 000
000 000 oooz:::%ooo
000 [eYeYe

000

Used to get one representation of a variable-size set or sequence.

Combine n input vectors into one single output vector,
with equal contribution.

But what if some of the inputs should contribute more than others?

Weighted Average Pooling

z= Za,-z,', where a; > O,Za,- =1
i i

The weights a control the relative importance of the inputs.

4/c0

Weighted Average Pooling

z= Za,-z;, where a; > O,Za; =1
i i

000

000, _

[©0 0k 000~
000 000

[CIeXelgg (@00

(@)
(@)
(@)
(@)
(@)
o

(@)
(@)
(@)
(@)
(@)
o

The weights a control the relative importance of the inputs.

But how to come up with these weights?
How to decide what’s important in a given context?

4/c0

Attention

Key idea: have a representation of the “context” as a vector g € R€.

Then, say the importance of z; is proportional to its alignment (~ angle) to g:

exp(q - zj)

Zj exp(q - z))
S—
[softmax ([q-Z1.....q-Zn])];

: Attn(q; z1,...,z,) = Za;z;.
i

Attention

Key idea: have a representation of the “context” as a vector g € R€.

Then, say the importance of z; is proportional to its alignment (~ angle) to g:

exp(q - i)
aj= —2 " Attn(q; z1,...,2p) =) aiz;.
T Tew(q z) ’ Z -
—— ———
[softmax ([q-z1,...q9-Z,])];

This is the basic attention mechanism:

Pool a bunch of vectors, with varying weights,
depending on how aligned they are with a context.

Attention

Key idea: have a representation of the “context” as a vector g € R€.

Then, say the importance of z; is proportional to its alignment (~ angle) to g:

exp(q - zj)

Zj exp(q - z))
S—
[softmax ([q-Z1.....q-Zn])];

: Attn(q; z1,...,z,) = Za;z;.
i

This is the basic attention mechanism:

Pool a bunch of vectors, with varying weights,
depending on how aligned they are with a context.

What could be the context?

® Could be just a static learned parameter.
e |f training on multiple tasks or domains, g can be an embedding of the domain.

¢ |n machine translation (say EN—NL), z; are the EN words,
g can be an embedding of the last NL word predicted (one by one).

Attention In Math And Code

exp(q - zj)

2jexp(q - zj)
—
[softmax ([q-z1,....q-z])];

zZ = Zaf,-z,-
i

words = [21, 79, 14] # indices
emb = Embedding(vocab_sz, dim)

optionally add RNN, CNN, whatever
Z = emb(words) # (3 x dim)

q = randn(dim) # (random context)

s=72@q
[-.3, -1.0, 1.8]

alpha = softmax(s, dim=0)
[.10, .05, .85]

z = alpha @ Z # (dim)

6/ 00

Attention and Expressivity

Attention by itself doesn’t make a model more expressive: intuitively, all the same
“information” is there in a uniform average too.

But it provides a sort of “shortcut”: it makes it easier to represent useful functions.

Lecture 6

Attention & Transformers

Part 2: Hierarchical Attention

Machine Learning for Structured Data
Vlad Niculae - LTL, UVA - https://vene.ro/mlsd

https://vene.ro/mlsd

Attention & Transformers

@ Hierarchical Attention

Hierarchical Attention

Encode and pool each sentence separately, then repeat over the sentence vectors.

A great movie. Very fun. Don't miss it!

10/ 00

Hierarchical Attention

Encode and pool each sentence separately, then repeat over the sentence vectors.

-
- Q-

i
. ° . » /o °
1 1

A great movie. Very fun. Don't miss it!

10/ 00

Machine Learning for Structured Data
Vlad Niculae - LTL, UVA - https://vene.ro/mlsd

https://vene.ro/mlsd

Machine Learning for Structured Data
Vlad Niculae - LTL, UVA - https://vene.ro/mlsd

https://vene.ro/mlsd

Attention & Transformers

@ Self-Attention

Key-Value Attention

Attention resembles set lookup:
Soft lookup (attention):
=4z
a = softmax(s)
return); a;z;
Hard set lookup (by similarity):
55=4q-Zj
i = arg max(s)

return z;

Key-Value Attention

Attention resembles set lookup: How about a dictionary lookup? If we

) have key-value pairs (k;, v;),
Soft lookup (attention):

5 =4q-
a = softmax(s)

return); o

Hard set lookup (by similarity):
5=q-
i = arg max(s)

return

Key-Value Attention

Attention resembles set lookup: How about a dictionary lookup? If we
) have key-value pairs (k;, v;),
Soft lookup (attention):
5i=4q-kj
5i=q-
a = softmax(s)
a = softmax(s)

return); ajv;
return); o

Hard set lookup (by similarity):
5=q-
i = arg max(s)

return

Key-Value Attention

Attention resembles set lookup:
Soft lookup (attention):

5i=q-

a = softmax(s)

return); o

Hard set lookup (by similarity):
5=q-
i = arg max(s)

return

How about a dictionary lookup? If we
have key-value pairs (k;, v;),

Sj=4q-kj
a = softmax(s)

return); ajv;

If we only have item embeddings

Z1,...,Zn We can learn a key/value
“views”: .

k,' = WKZ,'

v, = W—\r/Z,'

Self-Attention

l Can we represent an item (word) as a
\ combination of items relevant to it? (i.e.,
the item is itself the context)
If wehad K=V = Q = Z we would
The bears eat the pretty ones always retrieve the item itself.

z_out = []

=~
1

N

@

Wk # (n x dim)
Wv # (n x dim)
Q=Z@Wg # (n x dim)

<
1

N

@

for i in range(n):
zi = softmax(K @ Q[i]) @ V
z_out.append(zi)

Self-Attention

Can we represent an item (word) as a
combination of items relevant to it? (i.e.,
the item is itself the context)

Ifwehad K =V = Q = Z we would
The bears eat the pretty ones always retrieve the item itself.

z_out = []

K=2Z@Wk # (nx dim)
Wv # (n x dim)
Q=Z@Wg # (n x dim)

<
1

N

@

for i in range(n):
zi = softmax(K @ Q[i]) @ V
z_out.append(zi)
15/00

Self-Attention

The bears eat the pretty ones

z_out = []

K=2Z@Wk # (nx dim)
V=2Z@eW # (nx dim)
Q=Z@Wg # (n x dim)

for i in range(n):
zi = softmax(K @ Q[i]) @ V
z_out.append(zi)

Can we represent an item (word) as a
combination of items relevant to it? (i.e.,
the item is itself the context)

If wehad K=V = Q = Z we would
always retrieve the item itself.

Attention at each position is
independent and parallel. What happens
if we permute the inputs?

15/00

Self-Attention

The bears eat the pretty ones

z_out = []

K=2Z@Wk # (nx dim)
V=2Z@eW # (nx dim)
Q=Z@Wg # (n x dim)

for i in range(n):
zi = softmax(K @ Q[i]) @ V
z_out.append(zi)

Can we represent an item (word) as a
combination of items relevant to it? (i.e.,
the item is itself the context)

If wehad K=V = Q = Z we would
always retrieve the item itself.

Attention at each position is
independent and parallel. What happens
if we permute the inputs?

The outputs just get permuted the same
way! (equivariance).

15/00

Self-Attention

The bears eat the pretty ones

z_out = []

K=2Z@Wk # (nx dim)
V=2Z@eW # (nx dim)
Q=Z@Wg # (n x dim)

for i in range(n):
zi = softmax(K @ Q[i]) @ V
z_out.append(zi)

Can we represent an item (word) as a
combination of items relevant to it? (i.e.,
the item is itself the context)

If wehad K=V = Q = Z we would
always retrieve the item itself.

Attention at each position is
independent and parallel. What happens
if we permute the inputs?

The outputs just get permuted the same
way! (equivariance).

So, by default, self-attention is unaware
of sequential order. (Unlike CNN or
RNN encoders!)

15/00

Self-Attention for Sequences: Positional Embeddings

~
nwiin

i

drink the drink

16/ 00

Self-Attention for Sequences: Positional Embeddings

Add to each input vector an “offset” vector that
encodes (only) the position in the sequence.

imwian ...

! drink the drink Output now depends on the order: if permuting by o,

Zi = Z5(i) +p;.

Self-Attention for Sequences: Positional Embeddings

Add to each input vector an “offset” vector that
encodes (only) the position in the sequence.

imwian ...

! drink the drink Output now depends on the order: if permuting by o,

Zi = Z5(i) +p;.
Positional embeddings can be

1. fixed: e.g., based on trig functions of /.

2. learned: i.e., a separate
torch.nn.Embedding (num_embeddings=max_len)
through which we embed the sequence of
position indices (0,1,2,...,n—1).

Self-Attention for Sequences: Positional Embeddings

Add to each input vector an “offset” vector that
encodes (only) the position in the sequence.

imwian ...

! drink the drink Output now depends on the order: if permuting by o,

Zj = Z5(j) + P;-
fixed sinusoidal embeddings: Positional embeddings can be
1. fixed: e.g., based on trig functions of /.
2. learned: i.e., a separate
torch.nn.Embedding (num_embeddings=max_len)
through which we embed the sequence of
position indices (0,1,2,...,n—1).

1.0

sequence length

IS
)

0 20 40 60 80 100 120
dim

(2) is easier to code, but (1) can generalize to
sequences seen in training, due to its fixed pattern.

16/ 00

Self-Attention for Graphs

But hey: maybe permutation
equivariance is sometimes a good thing!

For instance, for graph neural networks!

Remember in GNN we computed the
message from neighbors as a sum:

Self-Attention for Graphs

But hey: maybe permutation
equivariance is sometimes a good thing!

For instance, for graph neural networks!

Remember in GNN we computed the
message from neighbors as a sum:

m; = Z Z;
JEN(i)
Instead, self-attention over neighbors:

_ exp(q; - kj)
2jreni) €xp(q; - kj)

m; = Z ajjv;

jEN(i)

aij

Self-Attention for Graphs

But hey: maybe permutation In other words: self-attention
equivariance is sometimes a good thing! constrained by the adjacency

. structure
For instance, for graph neural networks!

(no attention allowed where there is

Remember in GNN we computed the
no edge)

message from neighbors as a sum:
H
. ~ .
m; = Z z; Ethylene (CoHa): e=el_
JEN(i)
Instead, self-attention over neighbors: ' ' ' l l l

e I

H H C C H H

_ exp(q; - kj)
2jreni) €xp(q; - kj)

m; = Z ajjv;

jEN(i)

aij

Machine Learning for Structured Data
Vlad Niculae - LTL, UVA - https://vene.ro/mlsd

https://vene.ro/mlsd

Attention & Transformers

@O Transformers

Multi-Head Attention

Apply attention M times, independently, with different linear transformations to
give different keys/vals/queries.

(m) (m)
kl. = WK Z;
(m) _ (mT
v, = Wv Z;

..........

and concatenate the outputs:

z=[z",. .., zM]

Intuition: learn M different ways to look at the same set.

Multi-Head Attention In Code

T zms = []
K =W,
(m) _ (mT for m in range(M):

vi =Wy TV’ Km = Z @ Wk[m]

q'™ = W(Q”” q Vm = Z @ Wv[m]
agm = q @ Wqlm]

(m) _ (m) (m)
z'"™ = KeyValAttn(gq, kl,...,n’ V1,..A,n)
7= [2(1) Z(M)] zm = softmax(Km @ gm) @ Vm

zms . append (zm)

z = cat(zms)

Transformer

Stacked multi-head attention (+ some annoying details like LayerNorm)

e Combines some of the
strengths of CNN and RNN:

e Global even without much
depth: every output
depends on every input.

e Parallelizable: each position
and each head can be
computed separately.

(still one layer at a time)

The bears eat the pretty ones
e Sequence-aware thanks to

positional embeddings.

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

@6 1)8)6)) 0

)) Linear Projection of Flattened Patches

Y2 %3

<3 f| B I _|_|ﬁ
B R T

Source: Google blog https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html ©Dosovitskiy, Houlsby, Weissenborn, et al.
23/00

https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html

Wrapping Up

Transformers are very popular right now. Important to understand why.

All things being equal, my (and my friends’) experience is that they are harder
to train than RNNs and CNNs.

But their parallelizable nature lets them make best use of today’s best
supercomputing hardware!

It's not that two Transformer layers > two GRU layers.

But, we can train deeper Transformers faster and longer (on more data),
and currently this looks like the better trade-off.

This will probably change!

	Pooling: Fixed vs. Adaptive
	Hierarchical Attention
	Self-Attention
	Transformers

