
Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Recurrent Networks
and Graph Networks
Part 1: Recurrent Neural Networks

Lecture 5

https://vene.ro/mlsd

Recurrent Networks
and Graph Networks

1 Recurrent Neural Networks

Gated RNN

Bidirectional RNN

Multi-layer RNN

2 Graph Neural Networks

RNN vs GNN

Permutation equivariance

GNN Variants

2/∞

Last time: convolutions for sequences and grids

We saw how to encode

• variable-length sequences

• variable-size grids (images)

using layers of convolutions with small, learned sliding filters.

First layers capture local phenomena (ngrams, edges).

Deeper layers get increasingly “global” by combining lower level features.

Today: a completely different approach to handle variable-length data.

3/∞

Recurrent Neural Networks (RNN)

Remember: recurrence is when something invokes itself (e.g., a function calls itself).

Example:

sum([a1, a2, a3, . . . , an])
= a1+ sum([a2, a3, . . . , an])

= a1 + a2+ sum([a3, . . . , an])
= . . .

4/∞

Recurrent Neural Networks (RNN)

Recurrently encoding a sequence of input vectors (x1, . . . , xn) → (z1, . . . , zn):

z t = h(x t , z t−1)

x1 x2 x3
. . .

z0 z1 z2 z3 . . .

(input sequence)

(hidden states)

The simplest RNN is the Elman RNN:

z t = φ
©­­­« Wx t︸︷︷︸
lin. func. of inputs

+ Uz t−1︸ ︷︷ ︸
lin. func. of prev. state

+b
ª®®®¬

Each hidden state depends on the previous
ones. Therefore, cannot parallelize, must
compute in order z1, z2, . . .

The initial state z0 is a fixed parameter.

The final state zn has seen the entire
sequence.

5/∞

Gated RNN

Unless sequences are very short,
the simple RNN can get very unstable.

Assume d = 1 (single scalars) and all xt = 0,
then zt = φ (wzt−1).

0 1 2 3
number of applications of z tanh(10z)

1.0

0.5

0.0

0.5

1.0

z0 = + 0.1
z0 = 0.1

Idea: only update the state sometimes:

zt =

{
h(xt , zt−1), under some condition
zt−1, otherwise

A gated RNN is (basically) an RNN which also
predicts, at each step, whether to update its
state or not.

6/∞

Gated RNN

Unless sequences are very short,
the simple RNN can get very unstable.

Assume d = 1 (single scalars) and all xt = 0,
then zt = φ (wzt−1).

0 1 2 3
number of applications of z tanh(10z)

1.0

0.5

0.0

0.5

1.0

z0 = + 0.1
z0 = 0.1

Idea: only update the state sometimes:

zt =

{
h(xt , zt−1), under some condition
zt−1, otherwise

A gated RNN is (basically) an RNN which also
predicts, at each step, whether to update its
state or not.

6/∞

Hard and soft gating
Say we want to compute z as a choice between two numbers:

z =

{
c, if g = 0
d, if g = 1

where g serves as a “gate” that depends on some condition.

We can write this using multiplication and addition:

z = (1 − g) · c
+g · d

Can this expression handle soft gating 0 < g < 1? Consider g = 0.5.

Yes: we get a combination between the two choices. g = 0.5→ take the average.

7/∞

Hard and soft gating
Say we want to compute z as a choice between two numbers:

z =

{
c, if g = 0
d, if g = 1

where g serves as a “gate” that depends on some condition.

We can write this using multiplication and addition:

z = (1 − g) · c
+g · d

Can this expression handle soft gating 0 < g < 1? Consider g = 0.5.

Yes: we get a combination between the two choices. g = 0.5→ take the average.

7/∞

Hard and soft gating
Say we want to compute z as a choice between two numbers:

z =

{
c, if g = 0
d, if g = 1

where g serves as a “gate” that depends on some condition.

We can write this using multiplication and addition:

z = (1 − g) · c
+g · d

Can this expression handle soft gating 0 < g < 1? Consider g = 0.5.

Yes: we get a combination between the two choices. g = 0.5→ take the average.

7/∞

Hard and soft gating
Say we want to compute z as a choice between two numbers:

z =

{
c, if g = 0
d, if g = 1

where g serves as a “gate” that depends on some condition.

We can write this using multiplication and addition:

z = (1 − g) · c
+g · d

Can this expression handle soft gating 0 < g < 1? Consider g = 0.5.

Yes: we get a combination between the two choices. g = 0.5→ take the average.
7/∞

The Gated Recurrent Unit (GRU)
The GRU uses two gates:

• the update gate g t

= σ
(
W gx t +Ugz t−1 + bg

)

• the reset gate r t

= σ (W rx t +U rz t−1 + br)

The GRU main recurrence updates the hidden state as1.

z t = (1 − g t) ⊙ z̃ t

+ g t ⊙ z t−1

where ⊙ is elementwise multiplication; z̃ t is the candidate for new hidden state.

The candidate state is computed as

z̃ t = tanh (Wx t +U (r t ⊙ z t−1) + b)

1Notation: elementwise product [u ⊙ v]i = uivi
8/∞

The Gated Recurrent Unit (GRU)
The GRU uses two gates:

• the update gate g t = σ
(
W gx t +Ugz t−1 + bg

)
• the reset gate r t = σ (W rx t +U rz t−1 + br)

The GRU main recurrence updates the hidden state as1.

z t = (1 − g t) ⊙ z̃ t

+ g t ⊙ z t−1

where ⊙ is elementwise multiplication; z̃ t is the candidate for new hidden state.

The candidate state is computed as

z̃ t = tanh (Wx t +U (r t ⊙ z t−1) + b)

1Notation: elementwise product [u ⊙ v]i = uivi
8/∞

LSTM and other RNNs

There are other kinds of gated RNNs.

A famous one is the “long-short-term memory” or LSTM – we won’t cover its
internal details; the intuitions are similar.

There are some important subtle differences that are still being studied; e.g.,
formally LSTM can learn to “count” while GRU cannot.2

2Weiss et al (ACL 2018) “On the practical computational power
of finite precision RNNs for language recognition”

9/∞

Pooling an RNN output

x1 x2 x3
. . .

z0 z1 z2 z3 . . .

z

(input sequence)

(hidden states)

How to extract a single vector to
represent the entire sequence?

• Pool (e.g., max-pool) all states.

• Take the last state, z = zn.
• may have “recency bias” in favor of
the end of the sequence

• Mitigate this by going in both
directions?

10/∞

Pooling an RNN output

x1 x2 x3
. . .

z0 z1 z2 z3 . . .

z

(input sequence)

(hidden states)

How to extract a single vector to
represent the entire sequence?

• Pool (e.g., max-pool) all states.
• Take the last state, z = zn.

• may have “recency bias” in favor of
the end of the sequence

• Mitigate this by going in both
directions?

10/∞

Pooling an RNN output

x1 x2 x3
. . .

z0 z1 z2 z3 . . .

z

(input sequence)

(hidden states)

How to extract a single vector to
represent the entire sequence?

• Pool (e.g., max-pool) all states.
• Take the last state, z = zn.

• may have “recency bias” in favor of
the end of the sequence

• Mitigate this by going in both
directions?

10/∞

Bidirectional RNN

x1 x2 x3
. . .

(input sequence)

(hidden fwd)

(hidden bwd)
Same as two RNNs: one from left to
right, one from right to left.

Concatenate z t = [−→z t ,
←−z t] to get a

representation of word t .

Concatenate z = [−→z n,
←−z 1] to get a

representation of entire sequence.

11/∞

Bidirectional RNN

x1 x2 x3
. . .

−→z 0
−→z 1

−→z 2
−→z 3 . . .

←−z n
←−zn−1←−zn−2←−zn−3. . .

(input sequence)

(hidden fwd)

(hidden bwd)

Same as two RNNs: one from left to
right, one from right to left.

Concatenate z t = [−→z t ,
←−z t] to get a

representation of word t .

Concatenate z = [−→z n,
←−z 1] to get a

representation of entire sequence.

11/∞

Multi-layer RNN

Since the RNN outputs an sequence of hidden states,
we can feed these states as inputs to another RNN.

And so on.

Unlike for CNN, multiple layers don’t pass information
further: a single layer is enough to aggregate the entire
sequence.

But it can work better in practice.

12/∞

Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Recurrent Networks
and Graph Networks

Part 2: Graph Neural Networks

Lecture 5

https://vene.ro/mlsd

Recurrent Networks
and Graph Networks

1 Recurrent Neural Networks

Gated RNN

Bidirectional RNN

Multi-layer RNN

2 Graph Neural Networks

RNN vs GNN

Permutation equivariance

GNN Variants

14/∞

Encoding general graphs

Graph-structured data: proteins, molecules, social networks, etc.

A graph G = (V ,E):

• V = {1, . . . , n} is the set of nodes.

• E ⊆ V × V are the edges, e.g.,
(u, v) ∈ E means an edge from u to v

• Directed vs undirected graphs: in a
nutshell, undirected means
(u, v) ∈ E ⇐⇒ (v , u) ∈ E .

• the adjacenty matrix A ∈ {0, 1}n×n
encodes the set of edges E :
auv = 1 ⇐⇒ (u, v) ∈ E .

1

23

45

6

7

8

9

Each node can have a type
(e.g., carbon, hydrogen, . . .).

For simplicity, we assume
all edges are of the same type.

15/∞

Graph datasets

Two main scenarios, but the tools we use are the same

1. Each data point x (i) is a graph.
• e.g., molecule solubility, malicious software detection, protein classification, . . .
• can be given as a sequence of node labels (x (i)1 , . . . , x

(i)
ni)

and an adjacency matrix A(i)
• this is what you have in assignment 1

2. Data points are parts of one big graph.
• e.g., node classification (classifying bots on twitter), link prediction (instagram
follow suggestions), community detection, . . .

• much harder to set up experiments, dev set/test set, etc.

16/∞

Node representations with graph neural nets

Encoding a graph of input vectors (x1, . . . , xn) → (z1, . . . , zn):

z (k)
i

• We apply an iterative process.
• At iteration 0, z (0)

i
= x i (the input embedding)

• At each iteration, a node’s embedding is updated as a
function of the embeddings of its neighbors,
i.e., message passing along the edges:

m (k)
i

=
∑

j∈N (i)
z (k)
j

z (k+1)
i

= φ
(
W selfz

(k)
i
+W neighm

(k)
i
+ b

)
• Apply this update in parallel for every node, then repeat.

17/∞

Efficiently computing the messages
The message received by each node is a sum of its neighbors’ embeddings:

mi =
∑

j∈N (i)
z j

Denote by Z ∈ Rn×d the matrix of stacked node embeddings,
(n =num. nodes, d =embedding dimension).
The ith column of the adjacency matrix ai encodes the (in-)neighbors of node i .

a⊤i Z =

∑
j

aijz j = mi

Compute all messages at once:

M = A⊤Z

18/∞

Efficiently computing the messages
The message received by each node is a sum of its neighbors’ embeddings:

mi =
∑

j∈N (i)
z j

Denote by Z ∈ Rn×d the matrix of stacked node embeddings,
(n =num. nodes, d =embedding dimension).
The ith column of the adjacency matrix ai encodes the (in-)neighbors of node i .

a⊤i Z =

∑
j

aijz j = mi

Compute all messages at once:

M = A⊤Z

18/∞

Efficiently computing the messages
The message received by each node is a sum of its neighbors’ embeddings:

mi =
∑

j∈N (i)
z j

Denote by Z ∈ Rn×d the matrix of stacked node embeddings,
(n =num. nodes, d =embedding dimension).
The ith column of the adjacency matrix ai encodes the (in-)neighbors of node i .

a⊤i Z =
∑
j

aijz j =

mi

Compute all messages at once:

M = A⊤Z

18/∞

Efficiently computing the messages
The message received by each node is a sum of its neighbors’ embeddings:

mi =
∑

j∈N (i)
z j

Denote by Z ∈ Rn×d the matrix of stacked node embeddings,
(n =num. nodes, d =embedding dimension).
The ith column of the adjacency matrix ai encodes the (in-)neighbors of node i .

a⊤i Z =
∑
j

aijz j = mi

Compute all messages at once:

M = A⊤Z

18/∞

Efficiently computing the messages
The message received by each node is a sum of its neighbors’ embeddings:

mi =
∑

j∈N (i)
z j

Denote by Z ∈ Rn×d the matrix of stacked node embeddings,
(n =num. nodes, d =embedding dimension).
The ith column of the adjacency matrix ai encodes the (in-)neighbors of node i .

a⊤i Z =
∑
j

aijz j = mi

Compute all messages at once:

M = A⊤Z

18/∞

RNN vs GNN
The sequence (chain) graph is also a graph, we could use a GNN.

RNN: sequential updates

t=1

t=2

t=3

• Propagates through entire sequence
with L “messages”.

• Embeddings only aware of nodes to the
left (without bidirectional “hack”)

• Defined for sequences only (some
extensions possible).

GNN: parallel local updates

k=1

k=2

k=3

• After k iterations, every node got
updates from its neighborhood up to k
steps away.

• Can be used for any graph.

19/∞

RNN vs GNN
The sequence (chain) graph is also a graph, we could use a GNN.

RNN: sequential updates

t=1

t=2

t=3

• Propagates through entire sequence
with L “messages”.

• Embeddings only aware of nodes to the
left (without bidirectional “hack”)

• Defined for sequences only (some
extensions possible).

GNN: parallel local updates

k=1

k=2

k=3

• After k iterations, every node got
updates from its neighborhood up to k
steps away.

• Can be used for any graph.

19/∞

RNN vs GNN
The sequence (chain) graph is also a graph, we could use a GNN.

RNN: sequential updates

t=1

t=2

t=3

• Propagates through entire sequence
with L “messages”.

• Embeddings only aware of nodes to the
left (without bidirectional “hack”)

• Defined for sequences only (some
extensions possible).

GNN: parallel local updates

k=1

k=2

k=3

• After k iterations, every node got
updates from its neighborhood up to k
steps away.

• Can be used for any graph.

19/∞

RNN vs GNN
The sequence (chain) graph is also a graph, we could use a GNN.

RNN: sequential updates

t=1

t=2

t=3

• Propagates through entire sequence
with L “messages”.

• Embeddings only aware of nodes to the
left (without bidirectional “hack”)

• Defined for sequences only (some
extensions possible).

GNN: parallel local updates

k=1

k=2

k=3

• After k iterations, every node got
updates from its neighborhood up to k
steps away.

• Can be used for any graph.

19/∞

Pooling

As defined, a GNN gives us rich embeddings of every node.

To get a single embedding of the entire graph, we turn again to pooling.

Unlike for RNNs, there is no single node that could be taken as representative of
the entire graph (especially if k is small and the graph is wide).

We turn to the kind of pooling used for CNNs:

1. average pooling: z = 1
n (z1 + . . . + zn)

2. max pooling: [z]j = max([z1]j , . . . , [zn]j)

20/∞

Permutation equivariance

The structure of a graph doesn’t change if we number the nodes in another order.

The output of a GNN should not change either.

Mathematically, given a graph represented as (X ,A), for any permutation matrix P ,
a GNN satisfies

GNN(PX ,PAP⊤) = P GNN(X ,A).

21/∞

GNN variants

Many variations can be built on top of this idea.

• The update z (k+1)
i

= φ (W selfz
(k)
i
+W neighm

(k)
i
+ b) resembles an RNN.

→ gated variants (GGNN)!

• Separate weight matrices per iteration (W (k)
{self,neigh}, b

(k))

• Supporting different edge types:
• first, notice that W neigh

∑
j z j =

∑
j W neighz j .

• then, if e (i , j) is the type of the edge from i to j , we could compute ∑
j W e (i ,j)z j .

• Different normalization over neighbors (more next time).

22/∞

Today we have seen:

1 Recurrent Neural Networks

Gated RNN

Bidirectional RNN

Multi-layer RNN

2 Graph Neural Networks

RNN vs GNN

Permutation equivariance

GNN Variants

23/∞

	Recurrent Neural Networks
	Gated RNN
	Bidirectional RNN
	Multi-layer RNN

	Graph Neural Networks
	RNN vs GNN
	Permutation equivariance
	GNN Variants

