
Machine Learning for Structured DataVlad Niculae · LTL, UvA · https://vene.ro/mlsd

Representation Learning
with Convolutions
Part 1: Representation Learning

Lecture 4

https://vene.ro/mlsd

Representation Learning
with Convolutions

1 Representation Learning

2 1-d convolutions

3 Embedding Discrete Data

4 2-d convolution

2/∞

Representation Learning

So far, we have used hand-crafted representations h(x).
Starting today, we explore deep learning methods that can generaterepresentations of structured data.

3/∞

Fully-connected feed-forward layers.

For unstructured data, where wecan represent each data point asa fixed-dim vector
z0 = h0(x) ∈ Òd , feed-forwardnetwork.
The last hidden layer zm can beseen as a richer vectorrepresentation of the data point.
How to handle structuredinputs? Often of different sizes?
We will explore architecturesthat can handle sequences, grids,graphs of different dimensions.

z0 = h0(x)

z1 = φ (W 1z0 + b1)

z2 = φ (W 2z1 + b2)

f (x)

z0 = h0(x)

z1 = φ (W 1z0 + b1)

z2 = φ (W 2z1 + b2)

f (x)

z0 = h0(x)

z1 = φ (W 1z0 + b1)

z2 = φ (W 2z1 + b2)

f (x)

z0 = h0(x)

z1 = φ (W 1z0 + b1)

z2 = φ (W 2z1 + b2)

f (x)

z0 = h0(x)

z1 = φ (W 1z0 + b1)

z2 = φ (W 2z1 + b2)

f (x)

z0 = h0(x)

z1 = φ (W 1z0 + b1)

z2 = φ (W 2z1 + b2)

f (x)

4/∞

Machine Learning for Structured DataVlad Niculae · LTL, UvA · https://vene.ro/mlsd

Representation Learning
with Convolutions

Part 2: 1-d convolutions

Lecture 4

https://vene.ro/mlsd

Representation Learning
with Convolutions

1 Representation Learning

2 1-d convolutions

3 Embedding Discrete Data

4 2-d convolution

6/∞

Convolutions

When applying a dense linear layer Wz + b,the input and output dimensions must be fixed, because
shape(W) = (dout, din)

Convolutions: what if we learned small linear layersthat we slide along an input of variable size.

7/∞

Convolutions

When applying a dense linear layer Wz + b,the input and output dimensions must be fixed, because
shape(W) = (dout, din)

Convolutions: what if we learned small linear layersthat we slide along an input of variable size.

7/∞

1-d, single-channel convolution

Simplest case: z0 is just a sequence of numbers.
(Example: audio signal processing, time series. . .)

.1 .2 .3 .1 .1 .1 .3 .2 .1

1/3 1/3 1/3

• Only k parameters, but canapply to seq. of any length.
• Filters are activated by patchesthat match them.
• Since we slide, the position ofthe matching patch doesn’tmatter. (“translationequivariance”)
• Maps an input sequence to anoutput sequence of (almost)the same length. To make it thesame length, we can assumezero padding.

8/∞

1-d, single-channel convolution

Simplest case: z0 is just a sequence of numbers.
(Example: audio signal processing, time series. . .)

.1 .2 .3 .1 .1 .1 .3 .2 .1

1/3 1/3 1/3

.2

• Only k parameters, but canapply to seq. of any length.
• Filters are activated by patchesthat match them.
• Since we slide, the position ofthe matching patch doesn’tmatter. (“translationequivariance”)
• Maps an input sequence to anoutput sequence of (almost)the same length. To make it thesame length, we can assumezero padding.

8/∞

1-d, single-channel convolution

Simplest case: z0 is just a sequence of numbers.
(Example: audio signal processing, time series. . .)

.1 .2 .3 .1 .1 .1 .3 .2 .1

1/3 1/3 1/3

.2 .2

• Only k parameters, but canapply to seq. of any length.
• Filters are activated by patchesthat match them.
• Since we slide, the position ofthe matching patch doesn’tmatter. (“translationequivariance”)
• Maps an input sequence to anoutput sequence of (almost)the same length. To make it thesame length, we can assumezero padding.

8/∞

1-d, single-channel convolution

Simplest case: z0 is just a sequence of numbers.
(Example: audio signal processing, time series. . .)

.1 .2 .3 .1 .1 .1 .3 .2 .1

1/3 1/3 1/3

.2 .2 .17

• Only k parameters, but canapply to seq. of any length.
• Filters are activated by patchesthat match them.
• Since we slide, the position ofthe matching patch doesn’tmatter. (“translationequivariance”)
• Maps an input sequence to anoutput sequence of (almost)the same length. To make it thesame length, we can assumezero padding.

8/∞

1-d, single-channel convolution

Simplest case: z0 is just a sequence of numbers.
(Example: audio signal processing, time series. . .)

.1 .2 .3 .1 .1 .1 .3 .2 .1

1/3 1/3 1/3

.2 .2 .17 .1

• Only k parameters, but canapply to seq. of any length.
• Filters are activated by patchesthat match them.
• Since we slide, the position ofthe matching patch doesn’tmatter. (“translationequivariance”)
• Maps an input sequence to anoutput sequence of (almost)the same length. To make it thesame length, we can assumezero padding.

8/∞

1-d, single-channel convolution

Simplest case: z0 is just a sequence of numbers.
(Example: audio signal processing, time series. . .)

.1 .2 .3 .1 .1 .1 .3 .2 .1

1/3 1/3 1/3

.2 .2 .17 .1 .17

• Only k parameters, but canapply to seq. of any length.
• Filters are activated by patchesthat match them.
• Since we slide, the position ofthe matching patch doesn’tmatter. (“translationequivariance”)
• Maps an input sequence to anoutput sequence of (almost)the same length. To make it thesame length, we can assumezero padding.

8/∞

1-d, single-channel convolution

Simplest case: z0 is just a sequence of numbers.
(Example: audio signal processing, time series. . .)

.1 .2 .3 .1 .1 .1 .3 .2 .1

1/3 1/3 1/3

.2 .2 .17 .1 .17 .2

• Only k parameters, but canapply to seq. of any length.
• Filters are activated by patchesthat match them.
• Since we slide, the position ofthe matching patch doesn’tmatter. (“translationequivariance”)
• Maps an input sequence to anoutput sequence of (almost)the same length. To make it thesame length, we can assumezero padding.

8/∞

1-d, single-channel convolution

Simplest case: z0 is just a sequence of numbers.
(Example: audio signal processing, time series. . .)

.1 .2 .3 .1 .1 .1 .3 .2 .1

.2 .2 .17 .1 .17 .2 .2

• Only k parameters, but canapply to seq. of any length.
• Filters are activated by patchesthat match them.
• Since we slide, the position ofthe matching patch doesn’tmatter. (“translationequivariance”)
• Maps an input sequence to anoutput sequence of (almost)the same length. To make it thesame length, we can assumezero padding.

8/∞

1-d, single-channel convolution

Simplest case: z0 is just a sequence of numbers.
(Example: audio signal processing, time series. . .)

.1 .2 .3 .1 .1 .1 .3 .2 .1

.2 .2 .17 .1 .17 .2 .2

• Only k parameters, but canapply to seq. of any length.
• Filters are activated by patchesthat match them.
• Since we slide, the position ofthe matching patch doesn’tmatter. (“translationequivariance”)
• Maps an input sequence to anoutput sequence of (almost)the same length. To make it thesame length, we can assumezero padding.

8/∞

1-d, single-channel convolution

Simplest case: z0 is just a sequence of numbers.
(Example: audio signal processing, time series. . .)

0 .1 .2 .3 .1 .1 .1 .3 .2 .1 0

.1 .2 .2 .17 .1 .17 .2 .2 .1

• Only k parameters, but canapply to seq. of any length.
• Filters are activated by patchesthat match them.
• Since we slide, the position ofthe matching patch doesn’tmatter. (“translationequivariance”)
• Maps an input sequence to anoutput sequence of (almost)the same length. To make it thesame length, we can assumezero padding.

8/∞

Effects of different convolutional filters

.1 .2 .3 .1 .1 .1 .3 .2 .1

1/3 1/3 1/3

.2 .2 .17 .1 .17 .2 .2

0 1 2 3 4 5 6 7 8
0.10

0.15

0.20

0.25

0.30
[1/3, 1/3, 1/3]

input
output

0 1 2 3 4 5 6 7 8
0.2

0.1

0.0

0.1

0.2

0.3
[-1, 2, -1]

input
output

0 1 2 3 4 5 6 7 8
0.3

0.2

0.1

0.0

0.1

0.2

0.3
[1, -2, 1]

input
output

9/∞

Convolution is sparkling matrix multiplication

• Turns out, convolution is multiplication with a “special” matrix, z1 = Wz0.
• But this W has a very special form that allows it to “stretch” to any size!
• This happens implicitly: such a matrix is never actually built in memory.



.1

.2

.2
.17
.1
.17
.2
.2
.1


= W



.1

.2

.3

.1

.1

.1

.3

.2

.1


10/∞

Convolution is sparkling matrix multiplication

• Turns out, convolution is multiplication with a “special” matrix, z1 = Wz0.
• But this W has a very special form that allows it to “stretch” to any size!
• This happens implicitly: such a matrix is never actually built in memory.



.1

.2

.2
.17
.1
.17
.2
.2
.1


=



1/3 1/3 0 0 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0 0
0 1/3 1/3 1/3 0 0 0 0 0
0 0 1/3 1/3 1/3 0 0 0 0
0 0 0 1/3 1/3 1/3 0 0 0
0 0 0 0 1/3 1/3 1/3 0 0
0 0 0 0 0 1/3 1/3 1/3 0
0 0 0 0 0 0 1/3 1/3 1/3
0 0 0 0 0 0 0 1/3 1/3





.1

.2

.3

.1

.1

.1

.3

.2

.1


10/∞

Machine Learning for Structured DataVlad Niculae · LTL, UvA · https://vene.ro/mlsd

Representation Learning
with Convolutions
Part 3: Embedding Discrete Data

Lecture 4

https://vene.ro/mlsd

Representation Learning
with Convolutions

1 Representation Learning

2 1-d convolutions

3 Embedding Discrete Data

4 2-d convolution

12/∞

Embeddings of Discrete Tokens

Neural networks perform continuous operations.
For sequential discrete data, (language, DNA, etc), we must first represent eachtoken as a continuous “embedding” vector.


3
2
3
1
1

︸︷︷︸
∈ÒL

→


e (3)
e (2)
e (3)
e (1)
e (1)

︸ ︷︷ ︸
∈ÒL×d

The function e (i) retrieves the ith row from an embedding matrix E ∈ Ò |V |×d .
The embeddings could be fixed or learned as model parameters.

13/∞

Embeddings of Discrete Tokens

Neural networks perform continuous operations.
For sequential discrete data, (language, DNA, etc), we must first represent eachtoken as a continuous “embedding” vector.


3
2
3
1
1

︸︷︷︸
∈ÒL

→


e (3)
e (2)
e (3)
e (1)
e (1)

︸ ︷︷ ︸
∈ÒL×d

The function e (i) retrieves the ith row from an embedding matrix E ∈ Ò |V |×d .
The embeddings could be fixed or learned as model parameters.

13/∞

Continuous Bag Of Words

Different-length sequences can be encoded by pooling their embeddings.
3
2
3
1
1


→


1
3
2

 →
• average pooling: z = 1

L (z1 + . . . + zL)

• max pooling: [z]j = max([z1]j , . . . , [zL]j (coordinate-wise)
Just like in the standard bag of words, word order doesn’t matter.

14/∞

Sequence convolutions
aka 1-d convolution with d channels

.7 .3 .1 .4 .1 .5 .9

• Denote L=sequence length,
d=embedding size, k=window size.

• In the single-channel case, a filter was adim-k vector. Now, a filter is a d × kmatrix.
• Output is still a single number perwindow.
• Apply m filters in parallel: output is adim-m vector per window:
a “layer” maps (L, d) → (L,m), for any L.

• Kind of like “continuous” n-grams!

To reduce visual noise on slides, we now use the same color for all words, even if they’re different words in general.
15/∞

Sequence convolutions
aka 1-d convolution with d channels

.7 .3 .1 .4 .1 .5 .9

• Denote L=sequence length,
d=embedding size, k=window size.

• In the single-channel case, a filter was adim-k vector. Now, a filter is a d × kmatrix.

• Output is still a single number perwindow.
• Apply m filters in parallel: output is adim-m vector per window:
a “layer” maps (L, d) → (L,m), for any L.

• Kind of like “continuous” n-grams!

To reduce visual noise on slides, we now use the same color for all words, even if they’re different words in general.
15/∞

Sequence convolutions
aka 1-d convolution with d channels

.7 .3 .1 .4 .1 .5 .9

• Denote L=sequence length,
d=embedding size, k=window size.

• In the single-channel case, a filter was adim-k vector. Now, a filter is a d × kmatrix.
• Output is still a single number perwindow.

• Apply m filters in parallel: output is adim-m vector per window:
a “layer” maps (L, d) → (L,m), for any L.

• Kind of like “continuous” n-grams!

To reduce visual noise on slides, we now use the same color for all words, even if they’re different words in general.
15/∞

Sequence convolutions
aka 1-d convolution with d channels

• Denote L=sequence length,
d=embedding size, k=window size.

• In the single-channel case, a filter was adim-k vector. Now, a filter is a d × kmatrix.
• Output is still a single number perwindow.
• Apply m filters in parallel: output is adim-m vector per window:
a “layer” maps (L, d) → (L,m), for any L.

• Kind of like “continuous” n-grams!

To reduce visual noise on slides, we now use the same color for all words, even if they’re different words in general.
15/∞

Sequence convolutions
aka 1-d convolution with d channels

• Denote L=sequence length,
d=embedding size, k=window size.

• In the single-channel case, a filter was adim-k vector. Now, a filter is a d × kmatrix.
• Output is still a single number perwindow.
• Apply m filters in parallel: output is adim-m vector per window:
a “layer” maps (L, d) → (L,m), for any L.

• Kind of like “continuous” n-grams!
To reduce visual noise on slides, we now use the same color for all words, even if they’re different words in general.

15/∞

Stacking convolutions

• Many different architectures arepossible.
• One successful idea: (also in yourassignment 1)alternate convolutions with(max-)pooling over small windows:hidden representations go from finer(local) to coarser (more global).
• Each (conv + max-pool) layer reducessequence length by the size of thepooling window.
• After enough layers, pool globally toget a dout-dimensionalrepresentation independent of L. 16/∞

Machine Learning for Structured DataVlad Niculae · LTL, UvA · https://vene.ro/mlsd

Representation Learning
with Convolutions

Part 4: 2-d convolution

Lecture 4

https://vene.ro/mlsd

Representation Learning
with Convolutions

1 Representation Learning

2 1-d convolutions

3 Embedding Discrete Data

4 2-d convolution

18/∞

Convolutions for images: 2-d convolution

• Instead of just left-to-right, we slidethe filter left-to-right top-to-bottom.
• As we go deeper, learned filtersbecome more global/abstract.

19/∞

From Zeiler and Fergus (2014), “Visualizing and Understanding Convolutional Networks”. ECCV, ©Springer.

From Zeiler and Fergus (2014), “Visualizing and Understanding Convolutional Networks”. ECCV, ©Springer.

From Zeiler and Fergus (2014), “Visualizing and Understanding Convolutional Networks”. ECCV, ©Springer.

Some more practical considerations of convolutions

• Convolutions work great when the phenomenon of interest is fairly local.
• Strided convolution: when sliding, skip over a few positions.(As long as stride < kernel size / 2, no input positions are ignored.)
• If we want to compute representations of every position (word/pixel) rather than aglobal representation, there are two options:

1. no pooling and no striding,
2. down-sample and then up-sample again (“transpose convolutions”), e.g. “U-net”(Ronneberger et al, 2015).

21/∞

Convolutions:

1 Representation Learning

2 1-d convolutions

3 Embedding Discrete Data

4 2-d convolution

22/∞

	Representation Learning
	1-d convolutions
	Embedding Discrete Data
	2-d convolution

