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Representation Learning

So far, we have used hand-crafted representations h(x).

Starting today, we explore deep learning methods that can generate
representations of structured data.



Fully-connected feed-forward layers.

For unstructured data, where we
can represent each data point as
a fixed-dim vector

2o = ho(x) € RY, feed-forward
network.

The last hidden layer z,, can be
seen as a richer vector
representation of the data point.

How to handle structured
inputs? Often of different sizes?

We will explore architectures
that can handle sequences, grids,
graphs of different dimensions.

£(x)
z = p(Waz1 + by)
z; = dp(W1z9+ by)

2o = ho(x)
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Convolutions

When applying a dense linear layer Wz + b,
the input and output dimensions must be fixed, because

shape(W) = (dout, din)



Convolutions

When applying a dense linear layer Wz + b,
the input and output dimensions must be fixed, because

shape(W) = (dout, din)

Convolutions: what if we learned small linear layers
that we slide along an input of variable size.



1-d, single-channel convolution

Simplest case: zg is just a sequence of numbers.

(Example: audio signal processing, time series...)
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1-d, single-channel convolution

Simplest case: zg is just a sequence of numbers.

(Example: audio signal processing, time series...)

® Only k parameters, but can

apply to seq. of any length.

Filters are activated by patches
that match them.

Since we slide, the position of
the matching patch doesn’t
matter. (“translation
equivariance”)

Maps an input sequence to an
output sequence of (almost)
the same length. To make it the
same length, we can assume
zero padding.



1-d, single-channel convolution

Simplest case: zg is just a sequence of numbers.

(Example: audio signal processing, time series...)

® Only k parameters, but can

apply to seq. of any length.

Filters are activated by patches
that match them.

Since we slide, the position of
the matching patch doesn’t
matter. (“translation
equivariance”)

Maps an input sequence to an
output sequence of (almost)
the same length. To make it the
same length, we can assume
zero padding.



Effects of different convolutional filters

[1/3, 1/3, 1/3]

1/3|1/3|1/3 o0




Convolution is sparkling matrix multiplication

e Turns out, convolution is multiplication with a “special” matrix, z; = W z,.
e But this W has a very special form that allows it to “stretch” to any size!

e This happens implicitly: such a matrix is never actually built in memory.
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Convolution is sparkling matrix multiplication

e Turns out, convolution is multiplication with a “special” matrix, z; = W z,.
e But this W has a very special form that allows it to “stretch” to any size!

e This happens implicitly: such a matrix is never actually built in memory.
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Embeddings of Discrete Tokens

Neural networks perform continuous operations.

For sequential discrete data, (language, DNA, etc), we must first represent each
token as a continuous “embedding” vector.
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Embeddings of Discrete Tokens

Neural networks perform continuous operations.

For sequential discrete data, (language, DNA, etc), we must first represent each
token as a continuous “embedding” vector.

3 e(3) 000
2 e(2) 000
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The function e(/) retrieves the ith row from an embedding matrix E € RIVI*9,

The embeddings could be fixed or learned as model parameters.



Continuous Bag Of Words

Different-length sequences can be encoded by pooling their embeddings.

3 [0oo
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® average pooling: z = %(zl +...+2])
® max pooling: [z]; = max([z1]},...,[z.];

Just like in the standard bag of words, word order doesn’t matter.




Sequence convolutions

aka 1-d convolution with d channels

e Denote L=sequence length,

d=embedding size, k=window size.
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To reduce visual noise on slides, we now use the same color for all words, even if they're different words in general.
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Sequence convolutions

aka 1-d convolution with d channels

e Denote L=sequence length,
d=embedding size, k=window size.

¢ |n the single-channel case, a filter was a

dim-k vector. Now, a filterisa d x k
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Sequence convolutions

aka 1-d convolution with d channels

e Denote L=sequence length,
d=embedding size, k=window size.

¢ |n the single-channel case, a filter was a
dim-k vector. Now, a filterisa d x k
matrix.
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Sequence convolutions

aka 1-d convolution with d channels

e Denote L=sequence length,
d=embedding size, k=window size.

o| |o| o [@ |o] @ o .
o o o |o o |o | ¢ |n the single-channel case, a filter was a
o o o o |o |o |o im- ;
o o o lo o o o dim k vector. Now, a filterisa d x k
matrix.
Y
Eﬂ @ e Qutput is still a single number per
® window.
8 8 8 8 8 8 8 ° A.pply m filters in pa.raIIeI: output is a
o| |0 | |0 |6 |© |0 dim-m vector per window:

a “layer” maps (L, d) — (L, m), for any L.
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Sequence convolutions

aka 1-d convolution with d channels

0000
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Denote L=sequence length,
d=embedding size, k=window size.

In the single-channel case, a filter was a
dim-k vector. Now, a filterisa d x k
matrix.

Output is still a single number per
window.

Apply m filters in parallel: output is a
dim-m vector per window:

a “layer” maps (L, d) — (L, m), for any L.

Kind of like “continuous” n-grams!

To reduce visual noise on slides, we now use the same color for all words, even if they're different words in general.
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Stacking convolutions

8 8 * Many different architectures are

o o possible.

o o

. S .
o @ @ @ Onfe successful idea: (also in your
o |o |o |o assignment 1)
e & ¢ o alternate convolutions with
o o |o |o ) !
= (max-)pooling over small windows:
%’ hidden representations go from finer
=)

e (local) to coarser (more global).
o] [e] [o] [o
o| o |o] |o e Each (conv + max-pool) layer reduces
ol |0 |o |o

sequence length by the size of the
pooling window.

e After enough layers, pool globally to
get a doyt-dimensional
representation independent of L.
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Convolutions for images: 2-d convolution

Q‘TL‘C .

e |nstead of just left-to-right, we slide
the filter left-to-right top-to-bottom.

® As we go deeper, learned filters
become more global/abstract.
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n Zeiler and Fergus (2014), “Visualiz nd Understanding Convolutional Networks”. ECCV, ©Springer.
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From Zeiler and Fergus (2014), “Visualizing and Understanding Convolutional Networks”. ECCV, ©Springer.



Some more practical considerations of convolutions

e Convolutions work great when the phenomenon of interest is fairly local.

e Strided convolution: when sliding, skip over a few positions.
(As long as stride < kernel size / 2, no input positions are ignored.)

¢ |f we want to compute representations of every position (word/pixel) rather than a
global representation, there are two options:

1. no pooling and no striding,
2. down-sample and then up-sample again (“transpose convolutions”), e.g. “U-net”
(Ronneberger et al, 2015).
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