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Representation Learning

So far, we have used hand-crafted representations h(x).
Starting today, we explore deep learning methods that can generaterepresentations of structured data.
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Fully-connected feed-forward layers.

For unstructured data, where wecan represent each data point asa fixed-dim vector
z0 = h0(x) ∈ Òd , feed-forwardnetwork.
The last hidden layer zm can beseen as a richer vectorrepresentation of the data point.
How to handle structuredinputs? Often of different sizes?
We will explore architecturesthat can handle sequences, grids,graphs of different dimensions.
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Convolutions

When applying a dense linear layer Wz + b,the input and output dimensions must be fixed, because
shape(W ) = (dout, din)

Convolutions: what if we learned small linear layersthat we slide along an input of variable size.
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1-d, single-channel convolution

Simplest case: z0 is just a sequence of numbers.
(Example: audio signal processing, time series. . . )

.1 .2 .3 .1 .1 .1 .3 .2 .1

1/3 1/3 1/3

• Only k parameters, but canapply to seq. of any length.
• Filters are activated by patchesthat match them.
• Since we slide, the position ofthe matching patch doesn’tmatter. (“translationequivariance”)
• Maps an input sequence to anoutput sequence of (almost)the same length. To make it thesame length, we can assumezero padding.
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Effects of different convolutional filters
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Convolution is sparkling matrix multiplication

• Turns out, convolution is multiplication with a “special” matrix, z1 = Wz0.
• But this W has a very special form that allows it to “stretch” to any size!
• This happens implicitly: such a matrix is never actually built in memory.


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
= W
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Embeddings of Discrete Tokens

Neural networks perform continuous operations.
For sequential discrete data, (language, DNA, etc), we must first represent eachtoken as a continuous “embedding” vector.


3
2
3
1
1

︸︷︷︸
∈ÒL

→


e (3)
e (2)
e (3)
e (1)
e (1)

︸    ︷︷    ︸
∈ÒL×d

The function e (i) retrieves the ith row from an embedding matrix E ∈ Ò |V |×d .
The embeddings could be fixed or learned as model parameters.
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Continuous Bag Of Words

Different-length sequences can be encoded by pooling their embeddings.
3
2
3
1
1


→


1
3
2

 →
• average pooling: z = 1

L (z1 + . . . + zL)

• max pooling: [z]j = max( [z1]j , . . . , [zL]j (coordinate-wise)
Just like in the standard bag of words, word order doesn’t matter.
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Sequence convolutions
aka 1-d convolution with d channels

.7 .3 .1 .4 .1 .5 .9

• Denote L=sequence length,
d=embedding size, k=window size.

• In the single-channel case, a filter was adim-k vector. Now, a filter is a d × kmatrix.
• Output is still a single number perwindow.
• Apply m filters in parallel: output is adim-m vector per window:
a “layer” maps (L, d) → (L,m), for any L.

• Kind of like “continuous” n-grams!

To reduce visual noise on slides, we now use the same color for all words, even if they’re different words in general.
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Stacking convolutions

• Many different architectures arepossible.
• One successful idea: (also in yourassignment 1)alternate convolutions with(max-)pooling over small windows:hidden representations go from finer(local) to coarser (more global).
• Each (conv + max-pool) layer reducessequence length by the size of thepooling window.
• After enough layers, pool globally toget a dout-dimensionalrepresentation independent of L. 16/∞
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Convolutions for images: 2-d convolution

• Instead of just left-to-right, we slidethe filter left-to-right top-to-bottom.
• As we go deeper, learned filtersbecome more global/abstract.
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From Zeiler and Fergus (2014), “Visualizing and Understanding Convolutional Networks”. ECCV, ©Springer.



From Zeiler and Fergus (2014), “Visualizing and Understanding Convolutional Networks”. ECCV, ©Springer.



From Zeiler and Fergus (2014), “Visualizing and Understanding Convolutional Networks”. ECCV, ©Springer.



Some more practical considerations of convolutions

• Convolutions work great when the phenomenon of interest is fairly local.
• Strided convolution: when sliding, skip over a few positions.(As long as stride < kernel size / 2, no input positions are ignored.)
• If we want to compute representations of every position (word/pixel) rather than aglobal representation, there are two options:

1. no pooling and no striding,
2. down-sample and then up-sample again (“transpose convolutions”), e.g. “U-net”(Ronneberger et al, 2015).
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