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Features

Last time, we saw that for any ML model we must encode the inputs x into some
sort of numeric vector.

h(x) = [h1(x), . . . , hd (x)] ∈ Òd

Example: x is a penguin (X is a set of penguins. Computers don’t know how to
process penguins unless we’re explicit.)

h1(x) is its bill length (in mm) h2(x) is its bill width (in mm)

In this case (and many simple ML cases), features are fixed, direct measurements.
We just have a dataset, we can’t go mess with the penguins directly :(

But other times we have a rich x with plenty of extra information.
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Representing structured objects

How to manually design h(x) if x is

• a text document

• an image

• a chunk of DNA

• a molecule

• a conversation tree on Reddit?
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Encoding text documents
text

tokenized encoded

x1 “this book is good!”

[ this, book, is, good, ! ] [ 9, 2, 5, 4, 0 ]

x2 “fairly long book”

[ fairly, long, book ] [ 3, 6, 2 ]

x3 “the book isn’t good.”

[ the, book, is, n’t, good, . ] [ 8, 2, 5, 7, 4, 1 ]

. . .

To represent text in a computer-friendly way, some things must happen:

1. Tokenize: split a string into a sequence of “tokens”.
(Roughly, think “words”: but words are hard to define.)
(Not easy! In some languages this is much harder than others!)

2. Build vocabulary: the set built from all tokens that appear in the training data.
! . book fairly . . . the this
0 1 2 3 8 9

3. Numerically encode: replace each token with its index in the vocabulary.
We are not done. Text is sequential, and sequences have different lengths.
How to design useful features?
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Bag of words
Simple but powerful idea: for each vocabulary item, a feature that counts it:

hi (x) = number of occurrences of word vi in x .

This leads to:

! . boo
k

fair
ly

goo
d

is long nt the this

text h1 h1 h2 h3 h4 h5 h6 h7 h8 h9
x1 “this book is good!” 1 0 1 0 1 1 0 0 0 1
x2 “fairly long book” 0 0 1 1 0 0 1 0 0 0
x3 “the book isn’t good.” 0 1 1 0 1 1 0 1 1 0

. . .

Variants: zero-one, normalized frequencies.

Order is lost: h(“doesn’t word order matter”) = h(“word order doesn’t matter”)
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Getting some structure back

Sequential order = a fundamental structure of language.

n-grams: treat n consecutive tokens as a single one.

Bigram tokenization:
“the book isn’t good.“→ [ the_book, book_is, is_n’t, n’t_good, good_. ]

This captures some local order.

Can even combine: 1-gram ∪ 2-gram ∪ . . . ∪ n-gram: 1

But, it comes at a cost: how many features are needed?

1Ensure combination is reversible or else we won’t be able to distinguish features.
For instance, here, _ must not appear in any unigram.
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Don’t forget about informed hand-crafted features:

length:
h(x) = number of words in x
h(x) = number of characters in x
h(x) = number of sentences in x

lexicon counts:
h(x) = number of times a word from some given, fixed set appears.
(e.g., positive lexicon = {"good", "great", "best", . . . })
comp. soc. science lexicons: hedges, first vs second vs third person pronouns, etc

measures of complexity:
h(x) = avg. n. characters per word
h(x) = avg. n. words per sentence (for longer docs)
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Computational biology
Comp. bio applies computational analysis to understand biological systems.
“The central dogma:” DNA makes RNA makes proteins.

DNA:
• genetic information: the “blueprint” for an organism.
• composed adenine, cytosine, guanine, thymine
• strands of DNA are sequences: GATATGCACTTAA...

RNA:
• regulatory role: catalyze reactions, control stuff.
• e.g., mRNA triggers protein synthesis

Protein:
• molecules that do the work in an organism
• e.g., antibodies, enzymes, transport, cell structure

https://cm.jefferson.edu/learn/dna-and-rna/ 11/∞
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Encoding biological data: DNA

DNA sequences: treat as text, with “words” A, C, G, T.

domain terminology: n-grams are called k-mers.

Compared to English language: much much fewer possible words.

example: extract from the sequence below 1-mers and 6-mers.
aagacgcatcg
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Encoding bio data: Proteins

• primary structure: a sequence of aminoacids:

Gly - Ile - Val - Glu - ... a

We can use sequence encodings that we know.

• higher-order (secondary, tertiary, etc) structure:
Folding due to interactions between (chunks of)
aminoacids.
We can encode as a graph: edges for interactions. b

aAbbreviations: https://www.genome.jp/kegg/catalog/codes1.html
bFigure modified from OpenStax Biology, CC BY 4.0.
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Molecules

O N N

N

O

N

Molecules are graphs:

• atoms are nodes

• bonds are edges

What is the generalization of bigrams? trigrams?

hand-crafted “descriptor” features from domain knowledge:

• number of total atoms / bonds

• number of hetero atoms (not H,C)

• relative positive charge
(highest charge / ∑ positive charges)

. . .
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Tree-structured data: internet conversations

(figure cropped from Tan et al “Winning Arguments: Interaction Dynamics and Persuasion
Strategies in Good-faith Online Discussions.” Reproduced with authors’ permission.)

structure is within message as well as
between messages.

prompt-response pairwise features:
why/because, so/though, . . .

descriptors:

• number of replies
• tree height (deepest path)
• . . .
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Practical tricks for discrete features

B.1: “it’s already legal”

B.2: “some key differences though”

[it’s_already, already_legal]

[some_key, key_differences, differences_though]

ordered pairwise interactions:
[(it’s_already, some_key), (it’s_already, key_differences), ...]

Easily include unary features by adding a placeholder token.
+ [(it’s_already, $), ...] + [($, some_key), ...]

Possibly a huge number of features
most very rare
even building the feature vocabulary is expensive
can use a hashing trick (Count-Min) to prune rare features
or encode features directly via hashing to save memory.
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Images

Images are 3d tensors x ∈ ÒW ×H×C

If all images have the same size, we could in
theory use raw pixel features:

hij0(x) = the percentage of red in pixel (i,j),

hij1(x) = the percentage of green in pixel (i,j)...

hij2(x) = the percentage of blue in pixel (i,j)...

What isn’t great in this representation?
. . .

(not showing the 3rd dimension)
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Image patch extraction

Patches = blocks of neighboring pixels.

More informative than a pixel alone!
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Filter matching: convolutions

Given a collection of known relevant patches (called filters)
W 1, . . . ,W d , of some fixed dimension (e.g. 10x10 px)

hk (x) = whether filter W k appears within the patches of image x .

Slide the filter over the image, checking at each position if it matches.

Let P i ,j be the patch of x centered at pixel i , j . Then,

hard matching : mk,i ,j =

{
1, P i ,j = W k ,

0, otherwise.

soft matching: mk,i ,j = P i ,j · W k
(dot product; higher if more similar)

Sliding window soft matching is called “convolution” (or, more accurately, cross-correlation.)

Shape of mk,i ,j? Can we use these ms as features?

Pooling: hk (x) = maxi ,j mk,i ,j .
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Aside: dot products

We’re probably familiar with the dot product between vectors of same dimension:

a, b ∈ Òd : a · b :=
d∑
i=1

aibi

Sometimes it’s more convinent to work with matrices and tensors: e.g., an image patch
P ∈ Òw×h×c is a tensor.

Sometimes this is not for mathematical reasons, but convenience, i.e., so we can easily
point at the red channel as P[:,:,0].

Mathematically, we can treat matrices and tensors as if they were vectors, flattened:

P,F ∈ Òw×h×c , P · F :=
∑
i

∑
j

∑
k

pi ,j,kwi ,j,k

I’m not kidding, this is known as endowing the vector space Òw×h×c with the Frobenius inner product structure.
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How to select a good collection of filters?

For very small size (eg 5x5), hand-crafted
“edge detector” and “corner detector”
patches are useful, but don’t say much
about objects.

Larger patches: extract all patches from
an entire dataset, and use some criterion
to select the “interesting” ones (e.g.,
clustering.)
(quite costly..)

Automatic feature learning with deep
networks: next time.

From scikit-learn example gallery, Image denoising using dictionary learning.
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