Lecture 3
 Designing Features
 For Structured Inputs

Part 1: Feature-based representations

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Designing Features
 For Structured Inputs

(1) Feature-based representations
(2) Sequences
(3) Graphs
(4) Trees
(5) Grids

Features

Last time, we saw that for any ML model we must encode the inputs x into some sort of numeric vector.

$$
\boldsymbol{h}(x)=\left[h_{1}(x), \ldots, h_{d}(x)\right] \in \mathbb{R}^{d}
$$

Example: x is a penguin (X is a set of penguins. Computers don't know how to process penguins unless we're explicit.)
$h_{1}(x)$ is its bill length (in mm) $h_{2}(x)$ is its bill width (in mm)
In this case (and many simple ML cases), features are fixed, direct measurements.
We just have a dataset, we can't go mess with the penguins directly :(
But other times we have a rich x with plenty of extra information.

Representing structured objects

How to manually design $\boldsymbol{h}(x)$ if x is

- a text document
- an image
- a chunk of DNA
- a molecule
- a conversation tree on Reddit?

Lecture 3
 Designing Features
 For Structured Inputs

Part 2: Sequences

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Designing Features
 For Structured Inputs

(1) Feature-based representations
(2) Sequences
(3) Graphs
(4) Trees
(5) Grids

Encoding text documents

```
x
x2 "fairly long book"
x3 "the book isn't good."
```

 text
 To represent text in a computer-friendly way, some things must happen:

Encoding text documents

	text	tokenized
x_{1}	"this book is good!"	[this, book, is, good, !]
x_{2} "fairly long book"	[fairly, long, book]	
x_{3} "the book isn't good."	[the, book, is, n't, good, .]	

To represent text in a computer-friendly way, some things must happen:

1. Tokenize: split a string into a sequence of "tokens". (Roughly, think "words": but words are hard to define.) (Not easy! In some languages this is much harder than others!)

Encoding text documents

	text	tokenized
x_{1}	"this book is good!"	[this, book, is, good, !]
x_{2} "fairly long book"	[fairly, long, book]	
x_{3} "the book isn't good."	[the, book, is, n't, good, .]	

To represent text in a computer-friendly way, some things must happen:

1. Tokenize: split a string into a sequence of "tokens".
(Roughly, think "words": but words are hard to define.)
(Not easy! In some languages this is much harder than others!)
2. Build vocabulary: the set built from all tokens that appear in the training data.

$!$.	book	fairly	\ldots	the	this
0	1	2	3		8	9

Encoding text documents

| text | tokenized | | encoded |
| :--- | :--- | :--- | :--- | :--- |
| x_{1} | "this book is good!" | [this, book, is, good, !] | $[9,2,5,4,0]$ |
| x_{2} | "fairly long book" | [fairly, long, book] | $[3,6,2]$ |
| x_{3} | "the book isn't good." | $[$ the, book, is, n't, good, .] | $[8,2,5,7,4,1]$ |

To represent text in a computer-friendly way, some things must happen:

1. Tokenize: split a string into a sequence of "tokens".
(Roughly, think "words": but words are hard to define.)
(Not easy! In some languages this is much harder than others!)
2. Build vocabulary: the set built from all tokens that appear in the training data.

$!$.	book	fairly	\ldots	the	this
0	1	2	3		8	9

3. Numerically encode: replace each token with its index in the vocabulary.

Encoding text documents

text
x_{1} "this book is good!"
x_{2} "fairly long book"
x_{3} "the book isn't good."
tokenized
[this, book, is, good, !]
[fairly, long, book]
[the, book, is, n't, good, .] [8, 2, 5, 7, 4, 1]

To represent text in a computer-friendly way, some things must happen:

1. Tokenize: split a string into a sequence of "tokens".
(Roughly, think "words": but words are hard to define.)
(Not easy! In some languages this is much harder than others!)
2. Build vocabulary: the set built from all tokens that appear in the training data.

$!$.	book	fairly	\ldots	the	this
0	1	2	3		8	9

3. Numerically encode: replace each token with its index in the vocabulary.

We are not done. Text is sequential, and sequences have different lengths.
How to design useful features?

Bag of words

Simple but powerful idea: for each vocabulary item, a feature that counts it:

$$
h_{i}(x)=\text { number of occurrences of word } v_{i} \text { in } x \text {. }
$$

This leads to:

		!		b^{0}	fail		is		nt	th	this
	text	h_{1}	h_{1}	h_{2}	h_{3}	h_{4}	h_{5}	h_{6}	h_{7}	h_{8}	h_{9}
${ }^{1}$	"this book is good!"	1	0	1	0	1	1	0	0	0	1
${ }^{2}$	"fairly long book"	0	0	1	1	0	0	1	0	0	0
X3	"the book isn't good."	0	1	1	0	1	1	0	1	1	0

Variants: zero-one, normalized frequencies.

Bag of words

Simple but powerful idea: for each vocabulary item, a feature that counts it:

$$
h_{i}(x)=\text { number of occurrences of word } v_{i} \text { in } x \text {. }
$$

This leads to:

		!		b^{0}	fail		is		nt	th	this
	text	h_{1}	h_{1}	h_{2}	h_{3}	h_{4}	h_{5}	h_{6}	h_{7}	h_{8}	h_{9}
${ }^{1}$	"this book is good!"	1	0	1	0	1	1	0	0	0	1
${ }^{2}$	"fairly long book"	0	0	1	1	0	0	1	0	0	0
X3	"the book isn't good."	0	1	1	0	1	1	0	1	1	0

Variants: zero-one, normalized frequencies.
Order is lost: \boldsymbol{h} ("doesn't word order matter") = h("word order doesn't matter")

Getting some structure back

Sequential order $=$ a fundamental structure of language.
n -grams: treat n consecutive tokens as a single one.
Bigram tokenization:
"the book isn't good." \rightarrow [the_book, book_is, is_n't, n't_good, good_.]
This captures some local order.
Can even combine: 1-gram $\cup 2$-gram $\cup \ldots \cup n$-gram: ${ }^{1}$
But, it comes at a cost: how many features are needed?

[^0]
Don't forget about informed hand-crafted features:

length:
$h(x)=$ number of words in x
$h(x)=$ number of characters in x
$h(x)=$ number of sentences in x
lexicon counts:
$h(x)=$ number of times a word from some given, fixed set appears.
(e.g., positive lexicon = \{"good", "great", "best", ... \})
comp. soc. science lexicons: hedges, first vs second vs third person pronouns, etc
measures of complexity:
$h(x)=$ avg. n. characters per word
$h(x)=$ avg. n . words per sentence (for longer docs)

Computational biology

Comp. bio applies computational analysis to understand biological systems.
"The central dogma:" DNA makes RNA makes proteins.

DNA:

- genetic information: the "blueprint" for an organism.
- composed adenine, cytosine, guanine, thymine
- strands of DNA are sequences: GATATGCACTTAA...

RNA:

- regulatory role: catalyze reactions, control stuff.
- e.g., mRNA triggers protein synthesis

Protein:

- molecules that do the work in an organism

- e.g., antibodies, enzymes, transport, cell structure

Encoding biological data: DNA

DNA sequences: treat as text, with "words" A, C, G, T.

Encoding biological data: DNA

DNA sequences: treat as text, with "words" A, C, G, T.
domain terminology: n-grams are called k-mers.

Encoding biological data: DNA

DNA sequences: treat as text, with "words" A, C, G, T.
domain terminology: n-grams are called k-mers.
Compared to English language: much much fewer possible words.

Encoding biological data: DNA

DNA sequences: treat as text, with "words" A, C, G, T.
domain terminology: n-grams are called k-mers.
Compared to English language: much much fewer possible words.
example: extract from the sequence below 1-mers and 6-mers.
aagacgcatcg

Encoding bio data: Proteins

- primary structure: a sequence of aminoacids:

$$
\text { Gly - Ile - Val - Glu - ... }{ }^{a}
$$

We can use sequence encodings that we know.

[^1]
Encoding bio data: Proteins

- primary structure: a sequence of aminoacids:

$$
\text { Gly - Ile - Val - Glu - ... }{ }^{a}
$$

We can use sequence encodings that we know.

- higher-order (secondary, tertiary, etc) structure: Folding due to interactions between (chunks of) aminoacids.
We can encode as a graph: edges for interactions. ${ }^{b}$

[^2]
Lecture 3

 Designing Features

 Designing Features
 For Structured Inputs

Part 3: Graphs

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Designing Features
 For Structured Inputs

(1) Feature-based representations
(2) Sequences
(3) Graphs
(4) Trees
(5) Grids

Molecules

Molecules are graphs:

- atoms are nodes
- bonds are edges

What is the generalization of bigrams? trigrams?

Molecules

Molecules are graphs:

- atoms are nodes
- bonds are edges

What is the generalization of bigrams? trigrams?
hand-crafted "descriptor" features from domain knowledge:

- number of total atoms / bonds
- number of hetero atoms (not H,C)
- relative positive charge
(highest charge / \sum positive charges)

Lecture 3

 Designing Features

 Designing Features
 For Structured Inputs

Part 4: Trees

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Designing Features
 For Structured Inputs

(1) Feature-based representations
(2) Sequences
(3) Graphs
(4) Trees
(5) Grids

Tree-structured data: internet conversations

(figure cropped from Tan et al "Winning Arguments: Interaction Dynamics and Persuasion Strategies in Good-faith Online Discussions." Reproduced with authors' permission.)
structure is within message as well as between messages.
prompt-response pairwise features: why/because, so/though, ...
descriptors:

- number of replies
- tree height (deepest path)
- ...

Practical tricks for discrete features

```
B.1: "it's already legal"
```



```
B.2: "some key differences though"
```

```
[it's_already, already_legal]
```

[it's_already, already_legal]
[some_key, key_differences, differences_though]
ordered pairwise interactions:
[(it's_already, some_key), (it's_already, key_differences), ...]

```

\section*{Practical tricks for discrete features}
```

B.1: "it's already legal"

```

```

B.2: "some key differences though"

```
```

[it's_already, already_legal]

```
[it's_already, already_legal]
[some_key, key_differences, differences_though]
ordered pairwise interactions:
[(it's_already, some_key), (it's_already, key_differences), ...]
```


Practical tricks for discrete features

B.1: "it's already legal" [it’s_already, already_legal, \$]B.2: "some key differences though"[some_key, key_differences, differences_though, \$]
ordered pairwise interactions:
[(it's_already, some_key), (it's_already, key_differences), ...]
Easily include unary features by adding a placeholder token.

+ [(it's_already, \$), ...] + [(\$, some_key), ...]

Practical tricks for discrete features

```
B.1: "it's already legal"
    \ell
B.2: "some key differences though"
[some_key, key_differences, differences_though, $]
ordered pairwise interactions:
[(it's_already, some_key), (it's_already, key_differences), ...]
Easily include unary features by adding a placeholder token.
+ [(it's_already, \$), ...] + [(\$, some_key), ...]
Possibly a huge number of features
most very rare
even building the feature vocabulary is expensive can use a hashing trick (Count-Min) to prune rare features
or encode features directly via hashing to save memory.
```


Lecture 3
 Designing Features
 For Structured Inputs

Part 5: Grids

Machine Learning for Structured Data
Vlad Niculae • LTL, UvA • https://vene.ro/mlsd

Designing Features
 For Structured Inputs

(1) Feature-based representations
(2) Sequences
(3) Graphs
(4) Trees
(5) Grids

Images

Images are $3 d$ tensors $x \in \mathbb{R}^{W \times H \times C}$
If all images have the same size, we could in theory use raw pixel features:
$h_{i j 0}(x)=$ the percentage of red in pixel (i,j),
$h_{i j 1}(x)=$ the percentage of green in pixel ($\left.\mathrm{i}, \mathrm{j}\right) . .$.
$h_{i j 2}(x)=$ the percentage of blue in pixel (i,j)...
What isn't great in this representation?

Image patch extraction

Patches $=$ blocks of neighboring pixels.
More informative than a pixel alone!

Filter matching: convolutions

Given a collection of known relevant patches (called filters)
W_{1}, \ldots, W_{d}, of some fixed dimension (e.g. $10 \times 10 \mathrm{px}$)
$h_{k}(x)=$ whether filter W_{k} appears within the patches of image x.
Slide the filter over the image, checking at each position if it matches.

Filter matching: convolutions

Given a collection of known relevant patches (called filters)
W_{1}, \ldots, W_{d}, of some fixed dimension (e.g. $10 \times 10 \mathrm{px}$)
$h_{k}(x)=$ whether filter W_{k} appears within the patches of image x.
Slide the filter over the image, checking at each position if it matches.
Let $P_{i, j}$ be the patch of x centered at pixel i, j. Then,
hard matching : $m_{k, i, j}= \begin{cases}1, & P_{i, j}=W_{k}, \\ 0, & \text { otherwise } .\end{cases}$

Filter matching: convolutions

Given a collection of known relevant patches (called filters)
W_{1}, \ldots, W_{d}, of some fixed dimension (e.g. $10 \times 10 \mathrm{px}$)
$h_{k}(x)=$ whether filter W_{k} appears within the patches of image x.
Slide the filter over the image, checking at each position if it matches.
Let $P_{i, j}$ be the patch of x centered at pixel i, j. Then,
hard matching : $m_{k, i, j}= \begin{cases}1, & P_{i, j}=W_{k}, \\ 0, & \text { otherwise } .\end{cases}$
soft matching: $m_{k, i, j}=\boldsymbol{P}_{i, j} \cdot \boldsymbol{W}_{k}$

(dot product; higher if more similar)

Filter matching: convolutions

Given a collection of known relevant patches (called filters)
W_{1}, \ldots, W_{d}, of some fixed dimension (e.g. $10 \times 10 \mathrm{px}$)
$h_{k}(x)=$ whether filter W_{k} appears within the patches of image x.
Slide the filter over the image, checking at each position if it matches.
Let $P_{i, j}$ be the patch of x centered at pixel i, j. Then,
hard matching : $m_{k, i, j}= \begin{cases}1, & \boldsymbol{P}_{i, j}=W_{k}, \\ 0, & \text { otherwise. }\end{cases}$
soft matching: $m_{k, i, j}=\boldsymbol{P}_{i, j} \cdot \boldsymbol{W}_{k}$

(dot product; higher if more similar)
Sliding window soft matching is called "convolution" (or, more accurately, cross-correlation.)
Shape of $m_{k, i, j}$? Can we use these $m s$ as features?

Filter matching: convolutions

Given a collection of known relevant patches (called filters)
W_{1}, \ldots, W_{d}, of some fixed dimension (e.g. $10 \times 10 \mathrm{px}$)
$h_{k}(x)=$ whether filter W_{k} appears within the patches of image x.
Slide the filter over the image, checking at each position if it matches.
Let $P_{i, j}$ be the patch of x centered at pixel i, j. Then,
hard matching : $m_{k, i, j}= \begin{cases}1, & \boldsymbol{P}_{i, j}=W_{k}, \\ 0, & \text { otherwise. }\end{cases}$
soft matching: $m_{k, i, j}=\boldsymbol{P}_{i, j} \cdot \boldsymbol{W}_{k}$

(dot product; higher if more similar)
Sliding window soft matching is called "convolution" (or, more accurately, cross-correlation.)
Shape of $m_{k, i, j}$? Can we use these $m s$ as features?
Pooling: $h_{k}(x)=\max _{i, j} m_{k, i, j}$.

Aside: dot products

We're probably familiar with the dot product between vectors of same dimension:

$$
\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{d}: \boldsymbol{a} \cdot \boldsymbol{b}:=\sum_{i=1}^{d} a_{i} b_{i}
$$

Aside: dot products

We're probably familiar with the dot product between vectors of same dimension:

$$
\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{d}: \boldsymbol{a} \cdot \boldsymbol{b}:=\sum_{i=1}^{d} a_{i} b_{i}
$$

Sometimes it's more convinent to work with matrices and tensors: e.g., an image patch $\boldsymbol{P} \in \mathbb{R}^{w \times h \times c}$ is a tensor.

Sometimes this is not for mathematical reasons, but convenience, i.e., so we can easily point at the red channel as $\mathrm{P}[:,:, 0]$.

Mathematically, we can treat matrices and tensors as if they were vectors, flattened:

$$
\boldsymbol{P}, \boldsymbol{F} \in \mathbb{R}^{w \times h \times c}, \quad \boldsymbol{P} \cdot \boldsymbol{F}:=\sum_{i} \sum_{j} \sum_{k} p_{i, j, k} w_{i, j, k}
$$

How to select a good collection of filters?

For very small size (eg 5×5), hand-crafted "edge detector" and "corner detector" patches are useful, but don't say much about objects.

Larger patches: extract all patches from an entire dataset, and use some criterion to select the "interesting" ones (e.g., clustering.)
(quite costly..)

Dictionary learned from face patches Train time 15.3s on 22692 patches

Automatic feature learning with deep networks: next time.

Feature design summary:

(1) Feature-based representations
(2) Sequences
(3) Graphs
(4) Trees
(5) Grids

[^0]: ${ }^{1}$ Ensure combination is reversible or else we won't be able to distinguish features. For instance, here, _ must not appear in any unigram.

[^1]: $a_{\text {Abbreviations: }}$ https://www.genome.jp/kegg/catalog/codes1.html
 $b_{\text {Figure modified from OpenStax Biology, CC BY 4.0. }}$

[^2]: $a_{\text {Abbreviations: https://www.genome.jp/kegg/catalog/codes1.html }}$
 $b_{\text {Figure modified from OpenStax Biology, CC BY 4.0. }}$

