
Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Machine Learning Recap

Part 1: Linear models

Lecture 2

https://vene.ro/mlsd

Outline:

1 Linear models

Features

Regression

Classification

2 Deep models

3 Tuning

4 Baselines and negative results

2/∞

What are “features”?

So far, we assumed x (i) is numerically encoded.

But usually there are multiple possible ways to represent the same object.
We need to handle this.

x =
[culmen length (mm), culmen depth (mm)]

[culmen depth (km), weight (kg)]

We call this a feature representation.

h(x) = [culmen length of x in mm︸ ︷︷ ︸
=h1 (x)

, culmen depth of x in mm︸ ︷︷ ︸
=h2 (x)

] ∈ Ò2

3/∞

What are “features”?

So far, we assumed x (i) is numerically encoded.

But usually there are multiple possible ways to represent the same object.
We need to handle this.

x =
[culmen length (mm), culmen depth (mm)]

[culmen depth (km), weight (kg)]

We call this a feature representation.

h(x) = [culmen length of x in mm︸ ︷︷ ︸
=h1 (x)

, culmen depth of x in mm︸ ︷︷ ︸
=h2 (x)

] ∈ Ò2

3/∞

What are “features”?

So far, we assumed x (i) is numerically encoded.

But usually there are multiple possible ways to represent the same object.
We need to handle this.

x =
[culmen length (mm), culmen depth (mm)]

[culmen depth (km), weight (kg)]

We call this a feature representation.

h(x) = [culmen length of x in mm︸ ︷︷ ︸
=h1 (x)

, culmen depth of x in mm︸ ︷︷ ︸
=h2 (x)

] ∈ Ò2

3/∞

Linear regression
Numeric targets: Y = Ò

Penguins example:

• h(x) ∈ Ò2, h0 =cu. length, h1 =cu. depth.
• y = flipper length.

model: fθ (x) = w · h(x)︸ ︷︷ ︸
:=
∑

j wjhj (x)

+b

(parameters: θ = {w , b})

prediction rule: ŷ = fθ (x)
evaluation: 1. mean squared error

MSE= 1
N

∑
i (ŷ (i) − y (i))2

2. root mse, RMSE=
√
MSE

3. mean absolute error
MAE= 1

N

∑
i |ŷ (i) − y (i) |

loss: LSE (ŷ , y) = (ŷ − y)2

4/∞

Linear regression
Numeric targets: Y = Ò

Penguins example:

• h(x) ∈ Ò2, h0 =cu. length, h1 =cu. depth.
• y = flipper length.

model: fθ (x) = w · h(x)︸ ︷︷ ︸
:=
∑

j wjhj (x)

+b

(parameters: θ = {w , b})
prediction rule: ŷ = fθ (x)

evaluation: 1. mean squared error
MSE= 1

N

∑
i (ŷ (i) − y (i))2

2. root mse, RMSE=
√
MSE

3. mean absolute error
MAE= 1

N

∑
i |ŷ (i) − y (i) |

loss: LSE (ŷ , y) = (ŷ − y)2

4/∞

Linear regression
Numeric targets: Y = Ò

Penguins example:

• h(x) ∈ Ò2, h0 =cu. length, h1 =cu. depth.
• y = flipper length.

model: fθ (x) = w · h(x)︸ ︷︷ ︸
:=
∑

j wjhj (x)

+b

(parameters: θ = {w , b})
prediction rule: ŷ = fθ (x)

evaluation: 1. mean squared error
MSE= 1

N

∑
i (ŷ (i) − y (i))2

2. root mse, RMSE=
√
MSE

3. mean absolute error
MAE= 1

N

∑
i |ŷ (i) − y (i) |

loss: LSE (ŷ , y) = (ŷ − y)2

4/∞

Linear regression
Numeric targets: Y = Ò

Penguins example:

• h(x) ∈ Ò2, h0 =cu. length, h1 =cu. depth.
• y = flipper length.

model: fθ (x) = w · h(x)︸ ︷︷ ︸
:=
∑

j wjhj (x)

+b

(parameters: θ = {w , b})
prediction rule: ŷ = fθ (x)

evaluation: 1. mean squared error
MSE= 1

N

∑
i (ŷ (i) − y (i))2

2. root mse, RMSE=
√
MSE

3. mean absolute error
MAE= 1

N

∑
i |ŷ (i) − y (i) |

loss: LSE (ŷ , y) = (ŷ − y)2

4/∞

Linear regression
Numeric targets: Y = Ò

Penguins example:

• h(x) ∈ Ò2, h0 =cu. length, h1 =cu. depth.
• y = flipper length.

model: fθ (x) = w · h(x)︸ ︷︷ ︸
:=
∑

j wjhj (x)

+b

(parameters: θ = {w , b})
prediction rule: ŷ = fθ (x)

evaluation: 1. mean squared error
MSE= 1

N

∑
i (ŷ (i) − y (i))2

2. root mse, RMSE=
√
MSE

3. mean absolute error
MAE= 1

N

∑
i |ŷ (i) − y (i) |

loss: LSE (ŷ , y) = (ŷ − y)2

4/∞

Linear regression
Numeric targets: Y = Ò

Penguins example:

• h(x) ∈ Ò2, h0 =cu. length, h1 =cu. depth.
• y = flipper length.

model: fθ (x) = w · h(x)︸ ︷︷ ︸
:=
∑

j wjhj (x)

+b

(parameters: θ = {w , b})
prediction rule: ŷ = fθ (x)

evaluation: 1. mean squared error
MSE= 1

N

∑
i (ŷ (i) − y (i))2

2. root mse, RMSE=
√
MSE

3. mean absolute error
MAE= 1

N

∑
i |ŷ (i) − y (i) |

loss: LSE (ŷ , y) = (ŷ − y)2

4/∞

Fitting linear regression
To keep things shorter, let’s fix b = 0 and write x := h(x)

minimizew

L(w) :=
1
N

∑
i

(w · x (i) − y (i))2︸ ︷︷ ︸
LSE (ŷ (i) ,y (i))

+ α ∥w ∥2︸︷︷︸
regularizer

Method 1: work it out by hand

+wL(w) =
2
N

∑
i

(w · x (i) − y (i))x (i) + 2αw

=
2
N

X⊤ (Xw − y) + 2αw .

At optimum, the gradient must be zero:

(X⊤X + αNI)w = X⊤y

w = (X⊤X + αNI)−1X⊤y .

Method 2: gradient-based optimization

pick w (0) , step size sequence η (t)

repeat until converged or tired:

w (t+1) ← η (t)+wL(w (t))

stochastic/mini-batch version: replace +wL with
an approx computed on one or a few data points.

5/∞

Fitting linear regression
To keep things shorter, let’s fix b = 0 and write x := h(x)

minimizew

L(w) :=
1
N

∑
i

(w · x (i) − y (i))2︸ ︷︷ ︸
LSE (ŷ (i) ,y (i))

+ α ∥w ∥2︸︷︷︸
regularizer

Method 1: work it out by hand

+wL(w) =
2
N

∑
i

(w · x (i) − y (i))x (i) + 2αw

=
2
N

X⊤ (Xw − y) + 2αw .

At optimum, the gradient must be zero:

(X⊤X + αNI)w = X⊤y

w = (X⊤X + αNI)−1X⊤y .

Method 2: gradient-based optimization

pick w (0) , step size sequence η (t)

repeat until converged or tired:

w (t+1) ← η (t)+wL(w (t))

stochastic/mini-batch version: replace +wL with
an approx computed on one or a few data points.

5/∞

Fitting linear regression
To keep things shorter, let’s fix b = 0 and write x := h(x)

minimizew

L(w) :=
1
N

∑
i

(w · x (i) − y (i))2︸ ︷︷ ︸
LSE (ŷ (i) ,y (i))

+ α ∥w ∥2︸︷︷︸
regularizer

Method 1: work it out by hand

+wL(w) =
2
N

∑
i

(w · x (i) − y (i))x (i) + 2αw

=
2
N

X⊤ (Xw − y) + 2αw .

At optimum, the gradient must be zero:

(X⊤X + αNI)w = X⊤y

w = (X⊤X + αNI)−1X⊤y .

Method 2: gradient-based optimization

pick w (0) , step size sequence η (t)

repeat until converged or tired:

w (t+1) ← η (t)+wL(w (t))

stochastic/mini-batch version: replace +wL with
an approx computed on one or a few data points.

5/∞

Classification
Binary case: Y = {0, 1}

Same model f (x) = w · h(x) + b;

Prediction rule: ŷ =

{
1, f (x) ≥ 0
0, f (x) < 0

A probabilistic approach: writing a = f (x),{
Pr(Y = 1|x) = σ (a)
Pr(Y = 0|x) = 1 − σ (a)

where σ (a) := 1
1 + e−a

3 2 1 0 1 2 3
a

0.2

0.4

0.6

0.8

(a
)

Maximizing the probability over an entire dataset:

Pr(Y (1) = y (1) , . . . ,Y (N) = y (N) |x (1) , . . . , x (N)) =
N∏
i=1

Pr(Y (i) = y (i) |x (i)) (because iid)

We like sums more than products, and minimize rather than maximize, so:

− log Pr(Y (1) , . . . |x (1) , . . .) =
N∑
i=1

− log Pr(Y (i) |x (i))

6/∞

Classification
Binary case: Y = {0, 1}

Same model f (x) = w · h(x) + b; Prediction rule: ŷ =

{
1, f (x) ≥ 0
0, f (x) < 0

A probabilistic approach: writing a = f (x),{
Pr(Y = 1|x) = σ (a)
Pr(Y = 0|x) = 1 − σ (a)

where σ (a) := 1
1 + e−a

3 2 1 0 1 2 3
a

0.2

0.4

0.6

0.8

(a
)

Maximizing the probability over an entire dataset:

Pr(Y (1) = y (1) , . . . ,Y (N) = y (N) |x (1) , . . . , x (N)) =
N∏
i=1

Pr(Y (i) = y (i) |x (i)) (because iid)

We like sums more than products, and minimize rather than maximize, so:

− log Pr(Y (1) , . . . |x (1) , . . .) =
N∑
i=1

− log Pr(Y (i) |x (i))

6/∞

Classification
Binary case: Y = {0, 1}

Same model f (x) = w · h(x) + b; Prediction rule: ŷ =

{
1, f (x) ≥ 0
0, f (x) < 0

A probabilistic approach: writing a = f (x),{
Pr(Y = 1|x) = σ (a)
Pr(Y = 0|x) = 1 − σ (a)

where σ (a) := 1
1 + e−a

3 2 1 0 1 2 3
a

0.2

0.4

0.6

0.8

(a
)

Maximizing the probability over an entire dataset:

Pr(Y (1) = y (1) , . . . ,Y (N) = y (N) |x (1) , . . . , x (N)) =
N∏
i=1

Pr(Y (i) = y (i) |x (i)) (because iid)

We like sums more than products, and minimize rather than maximize, so:

− log Pr(Y (1) , . . . |x (1) , . . .) =
N∑
i=1

− log Pr(Y (i) |x (i))

6/∞

Classification
Binary case: Y = {0, 1}

Same model f (x) = w · h(x) + b; Prediction rule: ŷ =

{
1, f (x) ≥ 0
0, f (x) < 0

A probabilistic approach: writing a = f (x),{
Pr(Y = 1|x) = σ (a)
Pr(Y = 0|x) = 1 − σ (a)

where σ (a) := 1
1 + e−a

3 2 1 0 1 2 3
a

0.2

0.4

0.6

0.8

(a
)

Maximizing the probability over an entire dataset:

Pr(Y (1) = y (1) , . . . ,Y (N) = y (N) |x (1) , . . . , x (N)) =
N∏
i=1

Pr(Y (i) = y (i) |x (i)) (because iid)

We like sums more than products, and minimize rather than maximize, so:

− log Pr(Y (1) , . . . |x (1) , . . .) =
N∑
i=1

− log Pr(Y (i) |x (i))

6/∞

Classification
Binary case: Y = {0, 1}

Same model f (x) = w · h(x) + b; Prediction rule: ŷ =

{
1, f (x) ≥ 0
0, f (x) < 0

A probabilistic approach: writing a = f (x),{
Pr(Y = 1|x) = σ (a)
Pr(Y = 0|x) = 1 − σ (a)

where σ (a) := 1
1 + e−a

3 2 1 0 1 2 3
a

0.2

0.4

0.6

0.8

(a
)

Maximizing the probability over an entire dataset:

Pr(Y (1) = y (1) , . . . ,Y (N) = y (N) |x (1) , . . . , x (N)) =
N∏
i=1

Pr(Y (i) = y (i) |x (i)) (because iid)

We like sums more than products, and minimize rather than maximize, so:

− log Pr(Y (1) , . . . |x (1) , . . .) =
N∑
i=1

− log Pr(Y (i) |x (i))
6/∞

Classification
Binary logistic regression

This negative log-probability is called the logistic loss or binary cross-entropy:

LLG(a, y) =
{
− log σ (a), y = 1
− log 1 − σ (a), y = 0

=

{
log(1 + exp(−a)), y = 1
log(1 + exp(a)), y = 0.

Logistic regression:

minimize
w

∑
i

LLG(w · h(x (i)) + b, y (i)) + α ∥w ∥2

No closed-form solution available.

Must do some form of gradient-based optimization.

7/∞

Classification
Binary logistic regression

This negative log-probability is called the logistic loss or binary cross-entropy:

LLG(a, y) =
{
− log σ (a), y = 1
− log 1 − σ (a), y = 0

=

{
log(1 + exp(−a)), y = 1
log(1 + exp(a)), y = 0.

Logistic regression:

minimize
w

∑
i

LLG(w · h(x (i)) + b, y (i)) + α ∥w ∥2

No closed-form solution available.

Must do some form of gradient-based optimization.

7/∞

Classification
Multi-class case: Y = {1, . . . ,K }

Why do we use σ (a) in the binary case?

• squish to (0, 1)
• symmetry: σ (a) + σ (−a) = 1.

Extension to K classes:
a = [a1, . . . , aK]

softmax(a) =
[
ea1

Z
, . . . ,

eaK

Z

]
, Z =

∑
i

eai .

Multi-class logistic regression:
model: f (x) = Wh(x) + b = [w⊤1 h(x) + b1, . . . ,w⊤Kh(x) + bK], (θ = {W , b})

loss: LLR (a, y) = − log Pr(Y = y |x) = −ay + log
K∑
k=1

exp ak .

8/∞

Classification
Multi-class case: Y = {1, . . . ,K }

Why do we use σ (a) in the binary case?

• squish to (0, 1)
• symmetry: σ (a) + σ (−a) = 1.

Proof:

σ (a) = 1
1 + e−a

σ (−a) = 1
1 + ea ·

e−a

e−a
=

e−a

e−a + e0 =
e−a

1 + e−a .

Extension to K classes:
a = [a1, . . . , aK]

softmax(a) =
[
ea1

Z
, . . . ,

eaK

Z

]
, Z =

∑
i

eai .

Multi-class logistic regression:
model: f (x) = Wh(x) + b = [w⊤1 h(x) + b1, . . . ,w⊤Kh(x) + bK], (θ = {W , b})

loss: LLR (a, y) = − log Pr(Y = y |x) = −ay + log
K∑
k=1

exp ak .

8/∞

Classification
Multi-class case: Y = {1, . . . ,K }

Why do we use σ (a) in the binary case?

• squish to (0, 1)
• symmetry: σ (a) + σ (−a) = 1.

Extension to K classes:
a = [a1, . . . , aK]

softmax(a) =
[
ea1

Z
, . . . ,

eaK

Z

]
, Z =

∑
i

eai .

Multi-class logistic regression:
model: f (x) = Wh(x) + b = [w⊤1 h(x) + b1, . . . ,w⊤Kh(x) + bK], (θ = {W , b})

loss: LLR (a, y) = − log Pr(Y = y |x) = −ay + log
K∑
k=1

exp ak .

8/∞

Classification
Multi-class case: Y = {1, . . . ,K }

Why do we use σ (a) in the binary case?

• squish to (0, 1)
• symmetry: σ (a) + σ (−a) = 1.

Extension to K classes:
a = [a1, . . . , aK]

softmax(a) =
[
ea1

Z
, . . . ,

eaK

Z

]
, Z =

∑
i

eai .

Multi-class logistic regression:
model: f (x) = Wh(x) + b = [w⊤1 h(x) + b1, . . . ,w⊤Kh(x) + bK], (θ = {W , b})

loss: LLR (a, y) = − log Pr(Y = y |x) = −ay + log
K∑
k=1

exp ak .

8/∞

Classification
Multi-class case: Y = {1, . . . ,K }

Why do we use σ (a) in the binary case?

• squish to (0, 1)
• symmetry: σ (a) + σ (−a) = 1.

Extension to K classes:
a = [a1, . . . , aK]

softmax(a) =
[
ea1

Z
, . . . ,

eaK

Z

]
, Z =

∑
i

eai .

Multi-class logistic regression:
model: f (x) = Wh(x) + b = [w⊤1 h(x) + b1, . . . ,w⊤Kh(x) + bK], (θ = {W , b})

loss: LLR (a, y) = − log Pr(Y = y |x) = −ay + log
K∑
k=1

exp ak .

8/∞

Classification
The Perceptron

An even simpler classifier.

a = f (x)
LPerc(a, y) = −ay + max

k∈1,...,K
ak

compare LLR(a, y)= −ay + log
∑
k

exp aj

−4 −2 0 2 4

0

1

2

3

4

5 max(0, t)
logsumexp(0, t)

9/∞

Linear versus NN regression
Penguins: x ∈ Ò2, h1 =bill length, h2 =bill depth. y = flipper length.

Linear model

ŷ = w · h(x) + b

MAE= 6.83

One-hidden-layer NN

ŷ = w · (ReLU (W 1h(x) + b1)) + b

MAE= 5.56
10/∞

Linear models summary

• Predict based on a linear function of the features.

• Efficient (fast) learning for regression and classification.

• Probabilistic interpretation.

• Limited expressivity means features must be well designed.

11/∞

Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Machine Learning Recap

Part 2: Deep models

Lecture 2

https://vene.ro/mlsd

Outline:

1 Linear models

Features

Regression

Classification

2 Deep models

3 Tuning

4 Baselines and negative results

13/∞

Deep models

Instead of f (x) = W h(x) + b with fixed features, can we learn more/better features?

input z0 = h0(x)
1st hidden layer z1 = φ (W 1z0 + b1)
2nd hidden layer z2 = φ (W 2z1 + b2)

...

zm = φ (Wmzm−1 + bm)
output f (x) = a = Wzm + b

θ = {W 1, b1, . . . ,Wm, bm,W , b}

φ is a nonlinearity, e.g., ReLU

On top of this model, we could use any loss function we know.

• NN regression: LSE(a, y) = (a − y)2

• NN probabilistic classification: LLR(a, y) = −ay + log
∑K

k=1 exp ak

14/∞

Deep models

Instead of f (x) = W h(x) + b with fixed features, can we learn more/better features?

input z0 = h0(x)
1st hidden layer z1 = φ (W 1z0 + b1)
2nd hidden layer z2 = φ (W 2z1 + b2)

...

zm = φ (Wmzm−1 + bm)
output f (x) = a = Wzm + b

θ = {W 1, b1, . . . ,Wm, bm,W , b}

φ is a nonlinearity, e.g., ReLU

On top of this model, we could use any loss function we know.

• NN regression: LSE(a, y) = (a − y)2

• NN probabilistic classification: LLR(a, y) = −ay + log
∑K

k=1 exp ak

14/∞

Computation graphs

Deep models require chaining many
operations together. This forms a graph:

z1 a L

z0 y

W 1, b1 W , b

This graph helps us compute gradients
wrt parameters.

∂L

∂W
=

∂L

∂a
∂a
∂W

∂L

∂W 1
=

∂L

∂a
∂a
∂z1

∂z1

∂W 1

PyTorch & co do this automatically!

15/∞

Computation graphs

Deep models require chaining many
operations together. This forms a graph:

z1 a L

z0 y

W 1, b1 W , b

This graph helps us compute gradients
wrt parameters.

∂L

∂W
=

∂L

∂a
∂a
∂W

∂L

∂W 1
=

∂L

∂a
∂a
∂z1

∂z1

∂W 1

PyTorch & co do this automatically!

15/∞

More complicated networks

If you took DSA, you’ll remember graphs are quite flexible:

standard feed-forward

weight sharing

residual connections

16/∞

Deep learning summary

• Flexible paradigm for expressing complicated functions of the input.

• “Automated feature learning” instead of hand-crafting.

• . . . but now we must hand-craft a good neural network architecture.

17/∞

Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Machine Learning Recap

Part 3: Tuning

Lecture 2

https://vene.ro/mlsd

Outline:

1 Linear models

Features

Regression

Classification

2 Deep models

3 Tuning

4 Baselines and negative results

19/∞

Overfitting

• The loss of a model on training data should
not be taken as a good indicator of how good
the model actually is.

• Zero loss not necessarily bad. But many
models have zero loss: some good, some bad.

• In ML, what we care about is generalization
to unseen data. Always evaluate
performance on an held-out test set.

20/∞

Overfitting

• The loss of a model on training data should
not be taken as a good indicator of how good
the model actually is.

• Zero loss not necessarily bad. But many
models have zero loss: some good, some bad.

• In ML, what we care about is generalization
to unseen data. Always evaluate
performance on an held-out test set.

20/∞

Overfitting

• The loss of a model on training data should
not be taken as a good indicator of how good
the model actually is.

• Zero loss not necessarily bad. But many
models have zero loss: some good, some bad.

• In ML, what we care about is generalization
to unseen data. Always evaluate
performance on an held-out test set.

20/∞

Tuning

• In designing a ML model we have many choices to make: hyperparameters.
• What model to use?
• Which loss to use?
• Regularization strength α
• Number of hidden layers?

• Need a sound scientific strategy to evaluate which choices work well.
• Simplest correct way: have two held-out datasets:

• a test set, for the final evaluation and reporting.
• a development set, for comparing design choices while working.

21/∞

Data splitting

Even in the binary classification case, we have some complications.

Shuffle split

• Shuffle the data, leave out a subset.

[••••••••︸ ︷︷ ︸
train

| ••••︸︷︷︸
dev

]

• What can happen if y = 1 is rare?

[•••••••• | ••••]

Stratified shuffle split

• Group data by label, split each
separately in the same proportion.

[•••••• | •••]

[•• | •]

• and combine:

[•••••••• | ••••]

22/∞

Machine Learning for Structured Data
Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Machine Learning Recap

Part 4: Baselines and negative results

Lecture 2

https://vene.ro/mlsd

Outline:

1 Linear models

Features

Regression

Classification

2 Deep models

3 Tuning

4 Baselines and negative results

24/∞

Baselines

• Say we have a binary classification task and a classifier f (x). We train and
evaluate it and we get 80% validation accuracy. Is this good?

• More details about the task: it is a lung xray pathology detection task, and 95%
of the images are healthy. What can you say now?

• A much simpler classifier f0(x) = healthy gets 95% accuracy with no training
and two lines of Python code.

• Ok, another scenario. You have a huge deep network that gets 64% accuracy.
Is this good?

• What if a linear model gets 69%?

• Always run simple baselines first.

25/∞

Baselines

• Say we have a binary classification task and a classifier f (x). We train and
evaluate it and we get 80% validation accuracy. Is this good?

• More details about the task: it is a lung xray pathology detection task, and 95%
of the images are healthy. What can you say now?

• A much simpler classifier f0(x) = healthy gets 95% accuracy with no training
and two lines of Python code.

• Ok, another scenario. You have a huge deep network that gets 64% accuracy.
Is this good?

• What if a linear model gets 69%?

• Always run simple baselines first.

25/∞

Baselines

• Say we have a binary classification task and a classifier f (x). We train and
evaluate it and we get 80% validation accuracy. Is this good?

• More details about the task: it is a lung xray pathology detection task, and 95%
of the images are healthy. What can you say now?

• A much simpler classifier f0(x) = healthy gets 95% accuracy with no training
and two lines of Python code.

• Ok, another scenario. You have a huge deep network that gets 64% accuracy.
Is this good?

• What if a linear model gets 69%?

• Always run simple baselines first.

25/∞

Baselines

• Say we have a binary classification task and a classifier f (x). We train and
evaluate it and we get 80% validation accuracy. Is this good?

• More details about the task: it is a lung xray pathology detection task, and 95%
of the images are healthy. What can you say now?

• A much simpler classifier f0(x) = healthy gets 95% accuracy with no training
and two lines of Python code.

• Ok, another scenario. You have a huge deep network that gets 64% accuracy.
Is this good?

• What if a linear model gets 69%?

• Always run simple baselines first.

25/∞

Baselines

• Say we have a binary classification task and a classifier f (x). We train and
evaluate it and we get 80% validation accuracy. Is this good?

• More details about the task: it is a lung xray pathology detection task, and 95%
of the images are healthy. What can you say now?

• A much simpler classifier f0(x) = healthy gets 95% accuracy with no training
and two lines of Python code.

• Ok, another scenario. You have a huge deep network that gets 64% accuracy.
Is this good?

• What if a linear model gets 69%?

• Always run simple baselines first.

25/∞

Baselines

• Say we have a binary classification task and a classifier f (x). We train and
evaluate it and we get 80% validation accuracy. Is this good?

• More details about the task: it is a lung xray pathology detection task, and 95%
of the images are healthy. What can you say now?

• A much simpler classifier f0(x) = healthy gets 95% accuracy with no training
and two lines of Python code.

• Ok, another scenario. You have a huge deep network that gets 64% accuracy.
Is this good?

• What if a linear model gets 69%?

• Always run simple baselines first.

25/∞

Baselines
• A good classification baseline: majority-class prediction.
Does this baseline require training?

• The majority-class baseline is indeed trained: we select the majority class by
looking only at training data, otherwise it’s not fair.
• What would be an equivalent of “majority prediction” for regression problems
where the outputs are continuous?
We want a constant predictor f0(x) = b, but what do we set b to?
• Let’s train b as a parameter, to minimize training MSE!

b∗ = argmin
b∈Ò

L(b), where L(b) :=
∑
i

.5(y (i) − b)2

+L(b∗) =
∑
i

(y (i) − b∗) = 0

this means
∑
i

y (i) = Nb∗, so b∗ =

∑
i y
(i)

N
.

(1)

26/∞

Baselines
• A good classification baseline: majority-class prediction.
Does this baseline require training?
• The majority-class baseline is indeed trained: we select the majority class by
looking only at training data, otherwise it’s not fair.

• What would be an equivalent of “majority prediction” for regression problems
where the outputs are continuous?
We want a constant predictor f0(x) = b, but what do we set b to?
• Let’s train b as a parameter, to minimize training MSE!

b∗ = argmin
b∈Ò

L(b), where L(b) :=
∑
i

.5(y (i) − b)2

+L(b∗) =
∑
i

(y (i) − b∗) = 0

this means
∑
i

y (i) = Nb∗, so b∗ =

∑
i y
(i)

N
.

(1)

26/∞

Baselines
• A good classification baseline: majority-class prediction.
Does this baseline require training?
• The majority-class baseline is indeed trained: we select the majority class by
looking only at training data, otherwise it’s not fair.
• What would be an equivalent of “majority prediction” for regression problems
where the outputs are continuous?
We want a constant predictor f0(x) = b, but what do we set b to?

• Let’s train b as a parameter, to minimize training MSE!
b∗ = argmin

b∈Ò
L(b), where L(b) :=

∑
i

.5(y (i) − b)2

+L(b∗) =
∑
i

(y (i) − b∗) = 0

this means
∑
i

y (i) = Nb∗, so b∗ =

∑
i y
(i)

N
.

(1)

26/∞

Baselines
• A good classification baseline: majority-class prediction.
Does this baseline require training?
• The majority-class baseline is indeed trained: we select the majority class by
looking only at training data, otherwise it’s not fair.
• What would be an equivalent of “majority prediction” for regression problems
where the outputs are continuous?
We want a constant predictor f0(x) = b, but what do we set b to?
• Let’s train b as a parameter, to minimize training MSE!

b∗ = argmin
b∈Ò

L(b), where L(b) :=
∑
i

.5(y (i) − b)2

+L(b∗) =
∑
i

(y (i) − b∗) = 0

this means
∑
i

y (i) = Nb∗, so b∗ =

∑
i y
(i)

N
.

(1)

26/∞

Baselines

• The constant prediction baseline for regression (trained to minimize MSE)
should always predict the mean of the training labels.

• Common mistake: predict training mean on training, validation mean on
validation, test mean on test: this is not a fair baseline, because model
parameters (including b) should be trained on training data only.

• You may find this constant prediction baseline in scikit-learn under the name
DummyRegressor:
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.
DummyRegressor.html

27/∞

https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html

Negative results

• A more powerful / more expressive / better motivated model will not
necessarily work better on the test set.

• This happens (and will happen to you many times in your career.) Not every
good idea will perform well on every problem and metric.

• A more powerful model should always fit the training data better (i.e., higher
train acc), but, unless tuned and regularized very carefully, might fail to
generalize well by overfitting to noisy phenomena in the training data.

• But this doesn’t mean a model that didn’t work is a bad idea or never works.
That is a much stronger hypothesis that needs extensive evidence.

28/∞

From scratch vs. existing modules

• Should you implement ML code from scratch or reuse libraries?

• Both need skill! Understanding APIs and documentation takes time.
• IMO: For real work, prefer to use existing code, under the following conditions:

• The code is high quality and actively maintained.
(Avoid random blog posts and github repos with zero issues on them!)

• You understand what the code does and how it works.
(You should be able to explain, e.g., why you chose a CNN over a RNN). Many
people understand ML models better if they implement them from scratch once.
But treat this as a learning exercise.

29/∞

Summary

1 Linear models

Features

Regression

Classification

2 Deep models

3 Tuning

4 Baselines and negative results

30/∞

	Linear models
	Features
	Regression
	Classification

	Deep models
	Tuning
	Baselines and negative results

