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Part 1: What This Course Is About
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Machine Learning

2x y

Understanding, choosing, designing:

• models
• learning algorithms
• evaluation metrics
• experiment methodology

to learn and evaluate mappings
from inputs x to outputs y .

... for Structured Data

2

structure, noun: the way in which a
complex object’s parts are organized
in relationship to one another.

Many objects we want to do ML on
have interesting structure:

language, images, shapes, networks. . .

This course: how to make use of structure
in the input and the output.
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Some things to keep in mind

• Goal: How to make use of structure for ML
so we expect you to be comfortable with ML basics.

• ML is fast-moving
popular architectures come and go every few years;
we’ll look a bit deeper, at the timeless underlying principles.

• Structure is common in many domains: we will explore several.
Language, Vision, Biology, Material Science, Social Science. . .

• Notation: There will be differences between classes, books, blogs. Don’t
assume the same symbol always means the same thing. If in doubt, ask.
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Machine Learning Recap
Definition: Supervised ML Task
Find an accurate mapping from x to y
from a labeled dataset {(x (1) , y (1) ), . . . , (x (N ) , y (N ) )}

Terminology and notation.

symbol explanation example

x ∈ X input object measurements of a penguin:
(flipper length, bill length, bill depth)
[181, 39.1, 18.7] ∈ X = Ò3

y ∈ Y output label: the desired true (“gold”) output penguin species
Y = {Chinstrap, Gentoo, Adélie}

{fθ : θ ∈ Θ} model class / architecture / family linear classifier fθ (x) = Wx + b

θ ∈ Θ model parameters (weights) θ = (W , b)
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ML design
Many choices to make when approaching a ML task.
modeling: • architecture f (linear model? neural network? decision tree? . . . )

• data encoding (pixel values? bag-of-words? . . . )
• regularization (∥ · ∥22? dropout? . . . )

training: • training objective / loss (logistic? hinge? perceptron? . . . )
• learning algorithm (SGD? Adam? L-BFGS? . . . )

evaluation: • metrics (accuracy? precision? F1? . . . )
• visualizations / reports

tuning: • validation split / cross-validation

Tuning

Modeling

Training

Ev
alu

ati
on

Evaluate on test,
deploy.
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Case Study: Semantic Image Segmentation
Classify every pixel according to the object it is a part of.

sofa
sofa
floor
floor
cat
box
. . .
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Case Study: Semantic Image Segmentation

sofa
sofa
cat

floor

How to model this?
A first idea

x ∈ Ò3 a pixel RGB, e.g., x = (255, 60, 30)

y ∈ { cat, sofa, floor, box, . . . }

Acts as if pixels are “IID”:
(independent & identically distributed)

What does this mean, and does it apply?
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Case Study: Semantic Image Segmentation

sofa
sofa
cat

floor

How to model this?
Idea 2: Some structured input context

x ∈ Òd×d×3 a pixel patch of pixels

y ∈ { cat, sofa, . . . } label of patch center

Structured context helps resolve ambiguous pixels.

But, only interactions are between nearby pixels.

9/∞



Case Study: Semantic Image Segmentation

sofa
sofa
cat

floor

How to model this?
Idea 2: Some structured input context

x ∈ Òd×d×3 a pixel patch of pixels

y ∈ { cat, sofa, . . . } label of patch center

Structured context helps resolve ambiguous pixels.

But, only interactions are between nearby pixels.

9/∞



Case Study: Semantic Image Segmentation

sofa
sofa
cat

floor

(convolutional network encoder)

How to model this?
Idea 3: Structured input context – to the max

x ∈ ÒW ×H×3, an entire image.

encode the image with a structure-aware deep network
(extract patches, recombine, extract again. . . )

y ∈ { cat, sofa, floor, box, . . . }W ×H

Make predictions independently for each pixel, but
based on rich representations of each pixel, that are
informed by wider context.

The richer we want the context to be, the larger & more
expensive the network needs to be.
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Outputs can have structure, too!

y =

©«

. . . . . . . .

. . . . . . . .

. . c c . . . .

. . c c c . . .

. . c . . . . .

. . . . . . . .

. . . . . . . b

. . . . . . b b

ª®®®®®®®®¬
• Adjacent labels likely to be the same.

• Nearby labels help disambiguate each other.
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(image from Amaury Guichon’s instagram)

drum / cake?
mirror / knife?
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Case Study: Semantic Image Segmentation

sofa
sofa

(Markov Random Field)

How to model this?
Idea 4: Using output structure

x ∈ ÒW ×H×3, an entire image.

encode as we want (CNN, simple patches...)

y ∈ { cat, sofa, floor, box, . . . }W ×H

Predict independently jointly over the entire image.

Labels self-correct to agree with neighbors.
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Which of these models do you know how to train?

1. Pixel-to-label

preprocess images into a pixel-level dataset, apply any clf

2. Patch-to-label

preprocess images into a patch-level dataset, apply any clf

3. Convolutional net encoder?

(covered in first half of this course)

4. Markov Random Field? (interdependent outputs)

(covered in second half of this course)
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How to evaluate?

y (k ) ∈ LW ×H , L = {Floor,Cat, . . .}, collection of labels for entire image.

predicted ŷ (k ) =

(
F F F F
F F C F
F C F F
F F F F

)
, true y (k ) =

(
F F F F
F C C F
F C C F
F F F F

)
.

• zero-one accuracy (unstructured standard): 1
N

∑N
k=1 É[ŷ (k ) = y (k ) ]

• Hamming score: 1
N

∑N
k=1

1
WH

∑
i ,j É[ŷ

(k )
ij

= y (k )
ij

]

• Problem-specific costs (e. g. , intersection-over-union, overlap%. . . )

Notation: É[q] =
{
1, if q is true
0, otherwise

“Iverson bracket”

Structured evaluation needs more consideration than unstructured.
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A few examples of structure

Sequence Grid Graph

Alignments Permutations Hierarchy
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Machine Learning

2x y

Understanding, choosing, designing:

• models
• learning algorithms
• evaluation metrics
• experiment methodology

to learn and evaluate mappings
from inputs x to outputs y .
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