

Learning with Sparse Latent Structure

Vlad Niculae

Instituto de Telecomunicações

Work with: André Martins, Claire Cardie, Mathieu Blondel

🖸 github.com/vene/sparsemap 🛛 💆 @vnfrombucharest

Structured Prediction

. . .

Structured Prediction

Structured Prediction

. . .

Latent Structure Models

freeze frame

с₁ с₂

• • •

с_N

$$\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}$$

$$\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{\theta}} = \boldsymbol{0}$$

Argmax vs. Softmax

$$\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{\theta}} = \operatorname{diag}(\boldsymbol{p}) - \boldsymbol{p}\boldsymbol{p}^{\mathsf{T}}$$

 $p_j = \exp(\theta_j)/Z$

$\Delta = \{ \boldsymbol{p} \in \mathbb{R}^N : \, \boldsymbol{p} \ge \boldsymbol{0}, \, \, \boldsymbol{1}^\top \boldsymbol{p} = \boldsymbol{1} \}$

1.5

0.5

N = 2

1

N = 3

1.5

$$\max_{j} \boldsymbol{\theta}_{j} = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{\theta}$$

$$\max_{j} \boldsymbol{\theta}_{j} = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{\theta}$$

$$\max_{j} \boldsymbol{\theta}_{j} = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{\theta}$$

$$\max_{j} \boldsymbol{\theta}_{j} = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{\theta}$$

Variational Form of Argmax

$$\max_{j} \boldsymbol{\theta}_{j} = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{\theta}$$

Variational Form of Argmax

$$\max_{j} \boldsymbol{\theta}_{j} = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{\theta}$$

Variational Form of Argmax

$$\max_{j} \boldsymbol{\theta}_{j} = \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^{\top} \boldsymbol{\theta}$$

 θ_1

 \wedge

$$\boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}) = \arg \max \boldsymbol{p}^{\top} \boldsymbol{\theta} - \Omega(\boldsymbol{p})$$

$$\boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}) = rg\max \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta} - \Omega(\boldsymbol{p})$$

 $\boldsymbol{p} \in \Delta$

argmax:
$$\Omega(\mathbf{p}) = \mathbf{0}$$

$$\boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}) = \arg \max \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\theta} - \Omega(\boldsymbol{p})$$

 $\boldsymbol{p} \in \Delta$

- argmax: $\Omega(\mathbf{p}) = \mathbf{0}$
- softmax: $\Omega(\mathbf{p}) = \sum_{j} p_{j} \log p_{j}$

$$\boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}) = \arg \max \boldsymbol{p}^{\top} \boldsymbol{\theta} - \Omega(\boldsymbol{p})$$

 $\boldsymbol{p} \in \Delta$

- argmax: $\Omega(\mathbf{p}) = \mathbf{0}$
- softmax: $\Omega(\mathbf{p}) = \sum_{j} p_{j} \log p_{j}$
- sparsemax: $\Omega(\mathbf{p}) = 1/2 ||\mathbf{p}||_2^2$

(Martins and Astudillo, 2016)

softmax

sparsemax

sparsemax(
$$\boldsymbol{\theta}$$
) = arg max $\boldsymbol{p}^{\top} \boldsymbol{\theta} - \frac{1}{2} \|\boldsymbol{p}\|_{2}^{2}$
= arg min $\|\boldsymbol{p} - \boldsymbol{\theta}\|_{2}^{2}$
 $\boldsymbol{p} \in \Delta$

sparsemax(
$$\boldsymbol{\theta}$$
) = arg max $\boldsymbol{p}^{\top}\boldsymbol{\theta} - \frac{1}{2} \|\boldsymbol{p}\|_{2}^{2}$
= arg min $\|\boldsymbol{p} - \boldsymbol{\theta}\|_{2}^{2}$
= $\boldsymbol{p} \in \Delta$

Computation:

 $\boldsymbol{p}^{\star} = [\boldsymbol{\theta} - \tau \mathbf{1}]_{+}$ $\boldsymbol{\theta}_{i} > \boldsymbol{\theta}_{j} \Rightarrow p_{i} \ge p_{j}$ O(d) via partial sort

(Held et al., 1974; Brucker, 1984; Condat, 2016)

sparsemax(
$$\boldsymbol{\theta}$$
) = arg max $\boldsymbol{p}^{\top}\boldsymbol{\theta} - \frac{1}{2}\|\boldsymbol{p}\|_{2}^{2}$
 $\boldsymbol{p} \in \Delta$
= arg min $\|\boldsymbol{p} - \boldsymbol{\theta}\|_{2}^{2}$
 $\boldsymbol{p} \in \Delta$
mputation:
= $[\mathbf{0}, \mathbf{z}^{1}]$

$$\boldsymbol{p}^{\star} = [\boldsymbol{\theta} - \tau \mathbf{1}]_{+}$$
$$\boldsymbol{\theta}_{i} > \boldsymbol{\theta}_{j} \Rightarrow \boldsymbol{p}_{i} \ge \boldsymbol{p}_{j}$$
$$\mathcal{O}(d) \text{ via partial sort}$$

Cor

(Held et al., 1974; Brucker, 1984; Condat, 2016)

$$\begin{aligned} \mathbf{J}_{\text{sparsemax}} &= \text{diag}(\mathbf{s}) - \frac{1}{|\mathcal{S}|} \mathbf{s} \mathbf{s}^{\top} \\ \text{where } \mathcal{S} &= \{j : p_{j}^{\star} > 0\}, \\ s_{j} &= [\![j \in \mathcal{S}]\!] \end{aligned}$$

(Martins and Astudillo, 2016)

sparsemax(
$$\boldsymbol{\theta}$$
) = arg max $\boldsymbol{p}^{\top} \boldsymbol{\theta} - 1/2 \|\boldsymbol{p}\|_{2}^{2}$
= arg min $\|\boldsymbol{p} - \boldsymbol{\theta}\|_{2}^{2}$
Computation: Backward pass:
 $\boldsymbol{p}^{\star} = [(argmin differentiation \\ \boldsymbol{\theta}_{i} > \boldsymbol{\theta}_{j} \\ (d) \text{ via}]$
 $(Gould et al., 2016; Amos and Kolter, 2017)$
 $(g(s) - \frac{1}{|S|}ss^{\top} : p_{j}^{\star} > 0\}, \quad z \in S$

(Held et al., 1974; Brucker, 1984; Condat, 2016)

(Martins and Astudillo, 2016)

fusedmax ?!

$$\boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}) = \arg \max \boldsymbol{p}^{\top} \boldsymbol{\theta} - \Omega(\boldsymbol{p})$$

 $\boldsymbol{p} \in \Delta$

- argmax: $\Omega(\mathbf{p}) = \mathbf{0}$
- softmax: $\Omega(\mathbf{p}) = \sum_{j} p_{j} \log p_{j}$
- sparsemax: $\Omega(\mathbf{p}) = 1/2 ||\mathbf{p}||_2^2$

$$\boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}) = \arg \max \boldsymbol{p}^{\top} \boldsymbol{\theta} - \Omega(\boldsymbol{p})$$

 $\boldsymbol{p} \in \Delta$

- argmax: $\Omega(\mathbf{p}) = \mathbf{0}$
- softmax: $\Omega(\mathbf{p}) = \sum_j p_j \log p_j$
- sparsemax: $\Omega(\mathbf{p}) = \frac{1}{2} ||\mathbf{p}||_2^2$ fusedmax: $\Omega(\mathbf{p}) = \frac{1}{2} ||\mathbf{p}||_2^2 + \sum_j |p_j - p_{j-1}|$ csparsemax: $\Omega(\mathbf{p}) = \frac{1}{2} ||\mathbf{p}||_2^2 + \iota(\mathbf{a} \le \mathbf{p} \le \mathbf{b})$

Fusedmax

$$fusedmax(\boldsymbol{\theta}) = \arg \max \boldsymbol{p}^{\top} \boldsymbol{\theta} - \frac{1}{2} \|\boldsymbol{p}\|_{2}^{2} - \sum_{2 \le j \le d} |p_{j} - p_{j-1}|$$
$$= \arg \min \|\boldsymbol{p} - \boldsymbol{\theta}\|_{2}^{2} + \sum_{2 \le j \le d} |p_{j} - p_{j-1}|$$
$$prox_{fused}(\boldsymbol{\theta}) = \arg \min \|\boldsymbol{p} - \boldsymbol{\theta}\|_{2}^{2} + \sum_{2 \le j \le d} |p_{j} - p_{j-1}|$$

Proposition: fusedmax($\boldsymbol{\theta}$) = sparsemax(prox_{fused}($\boldsymbol{\theta}$))

(Niculae and Blondel, 2017)

(INICUIAE and BIONGEI, ZUIT)

$$\boldsymbol{\pi}_{\Omega}(\boldsymbol{\theta}) = \arg \max \boldsymbol{p}^{\top} \boldsymbol{\theta} - \Omega(\boldsymbol{p})$$

 $\boldsymbol{p} \in \Delta$

- argmax: $\Omega(\mathbf{p}) = \mathbf{0}$
- softmax: $\Omega(\mathbf{p}) = \sum_j p_j \log p_j$
- sparsemax: $\Omega(\mathbf{p}) = \frac{1}{2} ||\mathbf{p}||_2^2$ fusedmax: $\Omega(\mathbf{p}) = \frac{1}{2} ||\mathbf{p}||_2^2 + \sum_j |p_j - p_{j-1}|$ csparsemax: $\Omega(\mathbf{p}) = \frac{1}{2} ||\mathbf{p}||_2^2 + \iota(\mathbf{a} \le \mathbf{p} \le \mathbf{b})$

finally

is essentially a (very high-dimensional) argmax

is essentially a (very high-dimensional) argmax

is essentially a (very high-dimensional) argmax

Factorization Into Parts $\boldsymbol{\theta} = \mathbf{A}^{\top} \boldsymbol{\eta}$

Factorization Into Parts $\theta = A^T \eta$

wheels dog on *

∗→dog	[1	0	0		[.1]	
on→dog	0	1	1		.2	
wheels→dog	0	0	0		1	
×→on	0	1	1		.3	
A = dog→on	1	0	0	 η =	.8	
wheels→on	0	0	0		.1	
*→wheels	0	0	0		3	
dog→wheels	0	1	0		.2	
on→wheels	1	0	1		1]	

Factorization Into Parts $\boldsymbol{\theta} = \mathbf{A}^{\top} \boldsymbol{n}$

.1

.2

-.1

.3

.8

.1

-.3

.2

-.1

n =

1

0

0

0

1

0

0

0

1

∗→dog

on→dog

∗→on

*→wheels

dog→wheels

on→wheels

wheels→dog

dog→on

wheels→on

A =

0

1 0

0

0

1

0

1

1 1

0

0 0

0

1

0

dog	~/	hond
on	\checkmark	ор
wheels		wielen

dog-hond	1		0	0			.1
dog—op	0		1	1			.2
dog—wielen	0		0	0			1
on-hond	0		0	0			.3
on—op	1		0	0		η=	.8
on-wielen	0		1	1			.1
eels-hond	0		1	0			3
eels—op	0		0	0			.2
eels-wielen	1		0	1			1
	dog-hond dog-op dog-wielen on-hond on-op on-wielen eels-hond eels-op eels-wielen	dog-hond1dog-op0dog-wielen0on-hond0on-op1on-wielen0eels-hond0eels-op0eels-wielen1	dog-hond1dog-op0dog-wielen0on-hond0on-op1on-wielen0eels-hond0eels-op0eels-wielen1	dog-hond 1 0 dog-op 0 1 dog-wielen 0 0 on-hond 0 0 on-op 1 on-wielen 0 1 eels-hond 0 1 eels-op 0 0 on-wielen 0 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c cccc} dog-hond & 1 & 0 & 0 \\ dog-op & 0 & 1 & 1 \\ dog-wielen & 0 & 0 & 0 \\ on-hond & 0 & 0 & 0 \\ on-op & 1 & \dots & 0 & 0 & \dots \\ on-wielen & 0 & 1 & 1 \\ eels-hond & 0 & 1 & 0 \\ eels-op & 0 & 0 & 0 \\ eels-wielen & 1 & 0 & 1 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$$\mathcal{M} := \operatorname{conv} \left\{ \boldsymbol{a}_h : h \in \mathcal{H} \right\}$$
$$= \left\{ \boldsymbol{A} \boldsymbol{p} : \boldsymbol{p} \in \Delta \right\}$$

$$\mathcal{M} := \operatorname{conv} \left\{ \boldsymbol{a}_h : h \in \mathcal{H} \right\}$$
$$= \left\{ \boldsymbol{A} \boldsymbol{p} : \boldsymbol{p} \in \Delta \right\}$$
$$= \left\{ \mathbb{E}_{H \sim \boldsymbol{p}} \boldsymbol{a}_H : \boldsymbol{p} \in \Delta \right\}$$

MAP arg max $\boldsymbol{\mu}^{\mathsf{T}}\boldsymbol{\eta}$ $\mu \in \mathcal{M}$

e.g. dependency parsing → max. spanning tree matching → the Hungarian algorithm

• **argmax** $\arg \max p^{\mathsf{T}} \boldsymbol{\theta}$ $p \in \Delta$

• softmax $\arg \max \boldsymbol{p}^{\top} \boldsymbol{\theta} + H(\boldsymbol{p})$ $\boldsymbol{p} \in \Delta$

• **argmax** arg max $p^{\top} \theta$ $p \in \Delta$

• softmax $\arg \max \boldsymbol{p}^{\top} \boldsymbol{\theta} + H(\boldsymbol{p})$ $\boldsymbol{p} \in \Delta$

e.g. dependency parsing \rightarrow the Matrix-Tree theorem

(Koo et al., 2007; D. A. Smith and N. A. Smith, 2007; McDonald and Satta, 2007)

As attention: (Liu and Lapata, 2018)

• **argmax** arg max
$$p^{\top} \theta$$

 $p \in \Delta$

• softmax $\arg \max \boldsymbol{p}^\top \boldsymbol{\theta} + H(\boldsymbol{p})$ $\boldsymbol{p} \in \Delta$

• sparsemax $\arg \max \boldsymbol{p}^{\top} \boldsymbol{\theta} - \frac{1}{2} \|\boldsymbol{p}\|^2$ $\boldsymbol{p} \in \Delta$

(Niculae, Martins, Blondel, and Cardie, 2018)

2

• argmax
$$\arg \max p^{T} \theta$$

 $p \in \Delta$
• softmax $\arg \max p^{T} \theta + H(p)$
 $p \in \Delta$
• softmax $\arg \max p^{T} \theta + H(p)$
 $p \in \Delta$
• sparsemax $\arg \max p^{T} \theta - \frac{1}{2} \|p\|^{2}$
• sparseMAP $\arg \max \mu^{T} \eta - \frac{1}{2} \|\mu\|$
 $\mu \in \mathcal{M}$

SparseMAP Solution

$$\boldsymbol{\mu}^{\star} = \arg \max \boldsymbol{\mu}^{\top} \boldsymbol{\eta} - \frac{1}{2} \|\boldsymbol{\mu}\|^2$$
$$\boldsymbol{\mu} \in \mathcal{M}$$

$$= \overset{\circ}{0}\overset{\circ}{0}\overset{\circ}{0} = .6\overset{\circ}{0}\overset{\circ}{0}\overset{\circ}{0} + .4\overset{\circ}{0}\overset{\circ}{0}\overset{\circ}{0}$$

= $\mathbf{A}\mathbf{p}^*$ with very sparse $\mathbf{p}^* \in \Delta^N$

Algorithms for SparseMAP

$$\boldsymbol{\mu}^{\star} = \arg \max \boldsymbol{\mu}^{\top} \boldsymbol{\eta} - \frac{1}{2} \|\boldsymbol{\mu}\|^2$$
$$\boldsymbol{\mu} \in \mathcal{M}$$

Algorithms for SparseMAP

$$\mu^{\star} = \arg \max \mu^{\top} \eta - 1/2 \|\mu\|^{2}$$
Ilinear constraints
(alas, exponentially many!) (alas, exponentially many!) (alas, exponentially many!)

Algorithms for SparseMAP

$$\mu^{\star} = \arg \max \mu^{\top} \eta - 1/2 \|\mu\|^{2}$$
Inter constraints
(alas, exponentially many!) (under a constraints) (under a constraints)

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

Algorithms for SparseMAP

$$\mu^{\star} = \arg \max \mu^{\top} \eta - \frac{1}{2} \|\mu\|^{2}$$
(alas, exponentially many!) (alas, exponentially many!) (blue) (constraints) (constraints

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

• select a new corner of ${\mathcal M}$

Algorithms for SparseMAP

$$\mu^{*} = \arg \max \mu^{\top} \eta - \frac{1}{2} \|\mu\|^{2}$$
(alas, exponentially many!) (alas, exponentially many!) (blue) (constraints) (constraints

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

• select a new corner of ${\mathcal M}$

$$\boldsymbol{a}_{\boldsymbol{y}^{\star}} = \arg \max_{\boldsymbol{\mu} \in \mathcal{M}} \boldsymbol{\mu}^{\top} \underbrace{(\boldsymbol{\eta} - \boldsymbol{\mu}^{(t-1)})}_{\widetilde{\boldsymbol{\eta}}}$$

Algorithms for SparseMAP $\mu^{\star} = \arg \max \mu^{\top} \eta - 1/2 \|\mu\|^{2}$ Innear constraints (alas, exponentially many!) (alas, exponentially many!) (black)

Conditional Gradient

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

- select a new corner of ${\cal M}$
- update the (sparse) coefficients of **p**
 - Update rules: vanilla, away-step, pairwise

Algorithms for SparseMAP $\mu^{\star} = \arg \max \mu^{\top} \eta - 1/2 \|\mu\|^{2}$ Inter constraints (alas, exponentially many!) (alas, exponentially many!) (blue) (blue) (classified of the second second

Conditional Gradient

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

- select a new corner of ${\cal M}$
- update the (sparse) coefficients of p
 - Update rules: vanilla, away-step, pairwise

• Quadratic objective: Active Set

(Nocedal and Wright, 1999, Ch. 16.4 & 16.5) (Wolfe, 1976; Vinyes and Obozinski, 2017)

Algorithms for SparseMAP

$$\mu^{\star} = \arg \max \mu^{\top} \eta - 1/2 \|\mu\|^{2}$$
Inter constraints
(alas, exponentially many!) (under a constraint) (und

(Frank and Wolfe, 1956; Lacost

- select a new corner
- update the (sparse)

Active Set achieves **finite** & **linear** convergence!

- Update rules: vanilla, away-step, pairwise
- Quadratic objective: Active Set

(Nocedal and Wright, 1999, Ch. 16.4 & 16.5) (Wolfe, 1976; Vinyes and Obozinski, 2017)

Algorithms for SparseMAP $\mu^{\star} = \arg \max \mu^{\top} \eta - 1/2 \|\mu\|^{2}$ Innear constraints (alas, exponentially many!) (alas, exponentially many!)

Conditional Gradient

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

- select a new corner of ${\cal M}$
- update the (sparse) coefficients of p
 - Update rules: vanilla, away-step, pairwise

• Quadratic objective: Active Set

(Nocedal and Wright, 1999, Ch. 16.4 & 16.5) (Wolfe, 1976; Vinyes and Obozinski, 2017)

Backward pass

Algorithms for SparseMAP

$$\mu^{\star} = \arg \max \mu^{\top} \eta - \frac{1}{2} \|\mu\|^{2}$$
Intear constraints
(alas, exponentially many!)

(Frank and Wolfe, 1956; Lacoste-Julien and Jaggi, 2015)

- select a new corner of ${\cal M}$
- update the (sparse) coefficients of **p**
 - Update rules: vanilla, away-step, pairwise

• Quadratic objective: Active Set

(Nocedal and Wright, 1999, Ch. 16.4 & 16.5) (Wolfe, 1976; Vinyes and Obozinski, 2017)

Backward pass

$$\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}} \text{ is sparse} \\ \text{computing } \left(\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}}\right)^{\mathsf{T}} \boldsymbol{d} y \\ \text{takes } O(\dim(\boldsymbol{\mu}) \operatorname{nnz}(\boldsymbol{p}^*))$$

- Update rules: vanilla, away-step, pairwise
- Quadratic objective: Active Set

(Nocedal and Wright, 1999, Ch. 16.4 & 16.5) (Wolfe, 1976; Vinyes and Obozinski, 2017) $\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}} \text{ is sparse} \\ \text{computing } \left(\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}}\right)^{\mathsf{T}} \boldsymbol{d} \boldsymbol{y} \\ \text{takes } O(\dim(\boldsymbol{\mu}) \operatorname{nnz}(\boldsymbol{p}^*))$

NLI premise: A gentleman overlooking a neighborhood situation. hypothesis: A police officer watches a situation closely.

(Model: ESIM (Chen et al., 2017))

NLI premise: A gentleman overlooking a neighborhood situation. hypothesis: A police officer watches a situation closely.

(Model: ESIM (Chen et al., 2017))

NLI premise: A gentleman overlooking a neighborhood situation. hypothesis: A police officer watches a situation closely.

(Model: ESIM (Chen et al., 2017))

NLI premise: A gentleman overlooking a neighborhood situation. hypothesis: A police officer watches a situation closely.

(Proposed model: global matching)

In code:

Xp: (n_prem x k) # $Xh: (n_hypo \times k)$ Z = Xp a Xh.t() Up = softmax(Z, dim=1)Uh = softmax(Z, dim=0)Xp = cat([Xp, Up a Xh])Xh = cat([Xh, Uh.t() a Xp])

In code:

Xp: (n prem x k)# Xp: (n prem x k) # Xh: (n hupo x k) # Xh: (n hupo x k)Z = Xp a Xh.t()Z = Xp a Xh.tUp = softmax(Z, dim=1) $U = sparsemap_matching(Z)$ Uh = softmax(Z. dim=0)Xp = cat([Xp, Up a Xh]) Xp = cat([Xp, U a Xh]) $Xh = cat([Xh, Uh, t() a Xp]) \quad Xh = cat([Xh, U, t() a Xp])$

76.5%

а gentleman overlooking а neighborhood situation Poliofivations stored . POILOFICET DES STOTEN

Dynamically inferring the computation graph

So far: a structured hidden layer $\mathbb{E}_{H}[\boldsymbol{a}_{H}]$

Network must handle "soft" combinations of structures. Fine for attention, but can be limiting.

(Tai et al., 2015)

The bears eat the pretty ones

Latent Dependency TreeLSTM

(Niculae, Martins, and Cardie, 2018)

Latent Dependency TreeLSTM

(Niculae, Martins, and Cardie, 2018)

$$p(y|x) = \sum_{h \in \mathcal{H}} p(y \mid h, x) p(h \mid x)$$

input

Х
$$p(y \mid x) = \sum_{h \in \mathcal{H}} p (y \mid h, x) p (h \mid x)$$

$$p(y \mid x) = \sum_{h \in \mathcal{H}} p_{\phi}(y \mid h, x) p_{\pi}(h \mid x)$$

e.g., a TreeLSTM defined by h $p(y \mid x) = \sum p_{\phi}^{\checkmark}(y \mid h, x) p_{\pi}(h \mid x)$ h∈H

Exponentially large sum!

idea 1

idea 2

idea 3

idea 3

idea 3

SparseMAP

SparseMAP

SparseMAP

$p(y \mid x) = .7 \quad p_{\phi}(y \mid \widehat{f} \cdot \widehat{f} \cdot \widehat{f}) + .3 \quad p_{\phi}(y \mid \widehat{f} \cdot \widehat{f} \cdot \widehat{f}) + .3 \quad p_{\phi}(y \mid \widehat{f} \cdot \widehat{f} \cdot \widehat{f})$

85% -	
84% -	
83% -	
82% -	
81% -	

00	0	0/								
ou	17	°O	_							

Sentiment classification (SST)

Sentence pair classification (P, H) $p(y \mid P, H) = \sum_{h_P \in \mathcal{H}(P)} \sum_{h_H \in \mathcal{H}(H)} p_{\phi}(y \mid h_P, h_H) p_{\pi}(h_P \mid P) p_{\pi}(h_H \mid H)$

Reverse dictionary lookup

given word description, predict word embedding (Hill et al., 2016) instead of p(y | x), we model $\mathbb{E}_{p_m} g(x) = \sum_{h \in \mathcal{H}} g(x; h) p_m(h | x)$

Reverse dictionary lookup

		(definitio	ns)		<i>·</i> ·		(concep	ots)	
accuracy@10	38% –				accuracy@10	38% -			
	36% –					36% -			
	34% -					34% -			
	32% -					32% -			
	30% —	LTR	Flat	Latent		30% —	LTR	Flat	Latent

Natural Language Inference (SNLI)

Reverse dictionary lookup

(concepts)

Syntax vs. Composition Order

CoreNLP parse, p = 21.4%

Syntax vs. Composition Order

p = 22.6%lovely and poignant \star CoreNLP parse, p = 21.4%

 \star lovely and poignant .

• • •

Syntax vs. Composition Order

p = 15.33%

Conclusions

Differentiable & sparse structured inference

Generic, extensible algorithms

Interpretable structured attention

Dynamically-inferred computation graphs

O github.com/vene/sparsemap

Extra slides

Acknowledgements

This work was supported by the European Research Council (ERC StG DeepSPIN 758969) and by the Fundação para a Ciência e Tecnologia through contract UID/EEA/50008/2013.

Some icons by Dave Gandy and Freepik via flaticon.com.

Danskin's Theorem

Let $\phi : \mathbb{R}^d \times \mathcal{Z} \to \mathbb{R}, \mathcal{Z} \subset \mathbb{R}^d$ compact. $\partial \max_{z \in \mathcal{Z}} \phi(x, z) = \operatorname{conv} \{ \nabla_x \phi(x, z^*) \mid z^* \in \arg\max_{z \in \mathcal{Z}} \phi(x, z) \}.$

Example: maximum of a vector

Danskin's Theorem

Let
$$\phi : \mathbb{R}^d \times \mathcal{Z} \to \mathbb{R}, \mathcal{Z} \subset \mathbb{R}^d$$
 compact.
 $\partial \max_{\mathbf{z} \in \mathcal{Z}} \phi(\mathbf{x}, \mathbf{z}) = \operatorname{conv} \{ \nabla_{\mathbf{x}} \phi(\mathbf{x}, \mathbf{z}^*) \mid \mathbf{z}^* \in \arg\max_{\mathbf{z} \in \mathcal{Z}} \phi(\mathbf{x}, \mathbf{z}) \}.$

Example: maximum of a vector

$$\partial \max_{j \in [d]} \theta_j = \partial \max_{\boldsymbol{p} \in \Delta} \boldsymbol{p}^\top \boldsymbol{\theta}$$
$$= \partial \max_{\boldsymbol{p} \in \Delta} \phi(\boldsymbol{p}, \boldsymbol{\theta})$$
$$= \operatorname{conv} \{ \nabla_{\boldsymbol{\theta}} \phi(\boldsymbol{p}^*, \boldsymbol{\theta})$$
$$= \operatorname{conv} \{ \boldsymbol{p}^* \}$$
Danskin's Theorem

Let
$$\phi : \mathbb{R}^d \times \mathbb{Z} \to \mathbb{R}, \mathbb{Z} \subset \mathbb{R}^d$$
 compact.
 $\partial \max_{\mathbf{z} \in \mathbb{Z}} \phi(\mathbf{x}, \mathbf{z}) = \operatorname{conv} \{ \nabla_{\mathbf{x}} \phi(\mathbf{x}, \mathbf{z}^*) \mid \mathbf{z}^* \in \arg\max_{\mathbf{z} \in \mathbb{Z}} \phi(\mathbf{x}, \mathbf{z}) \}.$

Example: maximum of a vector

Example: Source Sentence with Three Words

e.g., fertility constraints for NMT

constrained softmax: (Martins and Kreutzer, 2017) constrained sparsemax: (Malaviya et al., 2018)

Structured Output Prediction

rseMAP
$$L_{\mathbf{A}}(\boldsymbol{\eta}, \boldsymbol{\bar{\mu}}) = \max_{\boldsymbol{\mu} \in \mathcal{M}} \{ \boldsymbol{\eta}^{\mathsf{T}} \boldsymbol{\mu} - \frac{1}{2} \| \boldsymbol{\mu} \|^2 \}$$
$$- \boldsymbol{\eta}^{\mathsf{T}} \boldsymbol{\bar{\mu}} + \frac{1}{2} \| \boldsymbol{\bar{\mu}} \|^2$$

Spa

Instance of a structured Fenchel-Young loss, like CRF, SVM, etc. (Blondel, Martins, and Niculae, 2019)

Structured Output Prediction

SparseMAP
$$L_{\mathbf{A}}(\boldsymbol{\eta}, \bar{\boldsymbol{\mu}}) = \max_{\boldsymbol{\mu} \in \mathcal{M}} \{ \boldsymbol{\eta}^{\top} \boldsymbol{\mu} - \frac{1}{2} \| \boldsymbol{\mu} \|^2 \}$$
$$- \boldsymbol{\eta}^{\top} \bar{\boldsymbol{\mu}} + \frac{1}{2} \| \bar{\boldsymbol{\mu}} \|^2$$
cost-SparseMAP
$$L_{\mathbf{A}}^{\rho}(\boldsymbol{\eta}, \bar{\boldsymbol{\mu}}) = \max_{\boldsymbol{\mu} \in \mathcal{M}} \{ \boldsymbol{\eta}^{\top} \boldsymbol{\mu} - \frac{1}{2} \| \boldsymbol{\mu} \|^2 + \rho(\boldsymbol{\mu}, \bar{\boldsymbol{\mu}}) \}$$
$$- \boldsymbol{\eta}^{\top} \bar{\boldsymbol{\mu}} + \frac{1}{2} \| \bar{\boldsymbol{\mu}} \|^2$$

Instance of a structured Fenchel-Young loss, like CRF, SVM, etc. (Blondel, Martins, and Niculae, 2019)

Universal Dependencies dataset

Sparse Structured Output Prediction

As models train, inference gets sparser!

Sparse Structured Output Prediction

Inference captures linguistic ambiguity!

Sparse Structured Output Prediction

Inference captures linguistic ambiguity!

References I

- Amos, Brandon and J. Zico Kolter (2017). "OptNet: Differentiable optimization as a layer in neural networks". In: *Proc. of ICML*.
- Bertsekas, Dimitri P (1999). Nonlinear Programming. Athena Scientific Belmont.
- Blondel, Mathieu, André FT Martins, and Vlad Niculae (2019). "Learning with Fenchel-Young Losses". In: *preprint arXiv*:1901.02324.
- Brucker, Peter (1984). "An O(n) algorithm for quadratic knapsack problems". In: Operations Research Letters 3.3, pp. 163–166.
- Chen, Qian et al. (2017). "Enhanced LSTM for natural language inference". In: Proc. of ACL.
- Condat, Laurent (2016). "Fast projection onto the simplex and the l_1 ball". In: Mathematical Programming 158.1-2, pp. 575–585.
- Danskin, John M (1966). "The theory of max-min, with applications". In: SIAM Journal on Applied Mathematics 14.4, pp. 641–664.
- Dantzig, George B, Alex Orden, and Philip Wolfe (1955). "The generalized simplex method for minimizing a linear form under linear inequality restraints". In: *Pacific Journal of Mathematics* 5.2, pp. 183–195.

References II

Frank, Marguerite and Philip Wolfe (1956). "An algorithm for quadratic programming". In: *Nav. Res. Log.* 3.1-2, pp. 95–110.

Gould, Stephen et al. (2016). "On differentiating parameterized argmin and argmax problems with application to bi-level optimization". In: *preprint arXiv:1607.05447*.

- Held, Michael, Philip Wolfe, and Harlan P Crowder (1974). "Validation of subgradient optimization". In: *Mathematical Programming* 6.1, pp. 62–88.
- Hill, Felix et al. (2016). "Learning to understand phrases by embedding the dictionary". In: TACL 4.1, pp. 17–30.
- Kim, Yoon et al. (2017). "Structured attention networks". In: Proc. of ICLR.
- Koo, Terry et al. (2007). "Structured prediction models via the matrix-tree theorem". In: *Proc. of EMNLP*.
- Lacoste-Julien, Simon and Martin Jaggi (2015). "On the global linear convergence of Frank-Wolfe optimization variants". In: *Proc. of NeurIPS*.

References III

- Liu, Yang and Mirella Lapata (2018). "Learning structured text representations". In: TACL 6, pp. 63–75.
- Malaviya, Chaitanya, Pedro Ferreira, and André F. T. Martins (2018). "Sparse and constrained attention for neural machine translation". In: *Proc. of ACL*.
- Martins, André FT and Ramón Fernandez Astudillo (2016). "From softmax to sparsemax: A sparse model of attention and multi-label classification". In: *Proc. of ICML*.
- Martins, André FT and Julia Kreutzer (2017). "Learning What's Easy: Fully Differentiable Neural Easy-First Taggers". In: *Proc. of EMNLP*, pp. 349–362.
- McDonald, Ryan T and Giorgio Satta (2007). "On the complexity of non-projective data-driven dependency parsing". In: *Proc. of ICPT.*
- Niculae, Vlad and Mathieu Blondel (2017). "A regularized framework for sparse and structured neural attention". In: *Proc. of NeurIPS*.
- Niculae, Vlad, André FT Martins, Mathieu Blondel, et al. (2018). "SparseMAP: Differentiable sparse structured inference". In: *Proc. of ICML*.

References IV

- Niculae, Vlad, André FT Martins, and Claire Cardie (2018). "Towards dynamic computation graphs via sparse latent structure". In: *Proc. of EMNLP*.
- Nocedal, Jorge and Stephen Wright (1999). Numerical Optimization. Springer New York.
- Rabiner, Lawrence R. (1989). "A tutorial on Hidden Markov Models and selected applications in speech recognition". In: *P. IEEE* 77.2, pp. 257–286.
- Smith, David A and Noah A Smith (2007). "Probabilistic models of nonprojective dependency trees". In: *Proc. of EMNLP*.
- Tai, Kai Sheng, Richard Socher, and Christopher D Manning (2015). "Improved semantic representations from tree-structured Long Short-Term Memory networks". In: *Proc. of* ACL-IJCNLP.
- Taskar, Ben (2004). "Learning structured prediction models: A large margin approach". PhD thesis. Stanford University.
- Tibshirani, Robert et al. (2005). "Sparsity and smoothness via the fused lasso". In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67.1, pp. 91–108.

References V

Valiant, Leslie G (1979). "The complexity of computing the permanent". In: *Theor. Comput. Sci.* 8.2, pp. 189–201.

Vinyes, Marina and Guillaume Obozinski (2017). "Fast column generation for atomic norm regularization". In: *Proc. of AISTATS*.

Wolfe, Philip (1976). "Finding the nearest point in a polytope". In: *Mathematical Programming* 11.1, pp. 128–149.