
Romanian Syllabication using Machine Learning

Liviu P. Dinu1,2, Vlad Niculae1,3, and Octavia-Maria S, ulea1,2

1 Center for Computational Linguistics, University of Bucharest
2 Faculty of Mathematics and Computer Science, University of Bucharest

3 University of Wolverhampton
ldinu@fmi.unibuc.ro, vlad@vene.ro, mary.octavia@gmail.com

Abstract. The task of finding syllable boundaries can be straightfor-
ward or challenging, depending on the language. Text-to-speech applica-
tions have been shown to perform considerably better when syllabication,
whether orthographic or phonetic, is employed as a means of breaking
down the text into units bellow word level. Romanian syllabication is
non-trivial mainly but not exclusively due to its hiatus-diphthong ambi-
guity. This phenomenon affects both phonetic and orthographic syllabi-
cation. In this paper, we focus on orthographic syllabication for Roma-
nian and show that the task can be carried out with a high degree of
accuracy by using sequence tagging. We compare this approach to sup-
port vector machines and rule-based methods. The features we used are
simply character n-grams with end-of-word marking.

1 Introduction

In this paper we describe systems for solving end-of-the-line hyphenation in
Romanian. The most challenging aspect is that of distinguishing between hiatus
and diphthongs, an ambiguity exemplified in Table 1, as well as between the
letter i which can surface either as a non-vocalic element, or as a proper vowel,
affecting thus the syllable boundary. Although the words in the dataset we used
for this task were marked for main stress, we ignored this information in order
to build a system that works on plain text.

Table 1: Romanian hiatus/ diphthong ambiguity

sequence hiatus diphthong

ai ha-i-nă (heinous) hai-nă (coat)
iu pi-u-li-t,ă (screw nut) piu-re (purée)
oa bo-ar (bull herder) oa-meni (humans)
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2 Syllabication and end-of-the-line hyphenation

Syllabication or syllabification is the task of detecting syllable boundaries within
words. The boundaries depend on the phonetic structure of those words and on
phonotactic constraints of the respective language. End-of-the-line hyphenation,
on the other hand, is the task of determining where to break up a word when
it doesn’t fit at the end of a line in a written text and this separation may
or may not overlap with a syllable boundary, depending on how close its rules
are to those of proper syllabication in a particular language. This is why some
have dubbed the product of applying these end-of-the-line hyphenation rules
to a whole word, and not just in one place to accommodate line length, as
orthographic syllabication [2].

In Romanian, the rules for end-of-the-line hyphenation, as discussed in the
orthographic dictionary [4], are not based on phonetics and, if applied to the
whole word, may not render a proper phonetic syllabication, so a distinction can
and should be made between phonetic and orthographic syllabication. When
analyzing the orthographical rules listed in the dictionary, we see that they
diverge from the rules of phonetic syllabication by often times going against
the maximal onset principle and, thus, rendering different codas and onsets, but
not affecting the nucleus. This means that the diphthong-hiatus ambiguity is
maintained in and remains a source of problem for both types of syllabication.
The Romanian orthographic syllabication rules also diverge from the phonetic
ones in that they are mostly independent from stress placement since Romanian,
unlike French, doesn’t normally mark stress orthographically. In what follows we
will take into account these aspects.

The main application for syllabication, whether phonetic or orthographic,
has been shown to be in text-to-speech systems, where a need for letter-to-pho-
neme conversion is great. Specifically, the performance of the conversion has
been shown [2] to increase for English when done on segments smaller than
words, namely syllables, with the phonetic syllable increasing performance a bit
more. For orthographic syllabication, structured SVMs [2] and CRFs [10] have
been used. We investigated unstructured SVMs and CRFs when attempting
to solve only the task of orthographical syllabification, due to it being much
better resourced for Romanian. Attempts at solving the task of syllabication in
Romanian have used rule-based algorithms [9] as well as contextual information
(previous and following segments) with contextual grammars [5].

3 Approach

As mentioned previously, one difficulty of the syllabication task for Romanian,
of either type, lies in the Romanian diphthong-hiatus contrast, which, although
predictable for native speakers from diachronic information [3], is difficult to
discriminate based only on synchronic information. This is where statistical ma-
chine learning techniques will come into play.
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Table 2: Status difference in word-final i

part of speech nucleic in the coda

verb ci-ti (to read) ci-tes, ti (you read)
noun ti-gri (tigers) e-levi (pupils)
adjective ne-gri (black) albi (white)

3.1 Classifiers

Linear Support Vector Machine (SVM) A linear support vector machine
is a simple, unstructured learner that predicts one label for each input sample.
SVMs are discriminative max-margin models optimizing the hinge loss.

Lhinge(y, ŷ) = max(0, 1− y · ŷ)

The optimization problem can be approached using the scikit-learn stochastic
gradient descent (SGD) SVM solver. The `2 regularization is parametrized in
terms of α.

The objective function used by the SGD solver is:

E(w, b) =

M∑
i=1

Lhinge(yi, wxi + b) +
α

2

d∑
i=1

w2
i

For SGD, the learning rate schedule used for the updates is given by:

η(t) =
1

α(t0 + t)

In the above, t is the time step, going from 1 to M ∗N where M is the number
of samples and N is the number of passes over the training set (epochs). In our
case we used the default value of N = 5. t0 is determined based on a heuristic
proposed by Léon Bottou in the SvmSgd package4, such that the expected initial
updates are comparable with the expected size of the weights. This schedule is
the default one in the scikit-learn stochastic gradient descent classifier and it
performed well.

Sequence tagging Some problems can be structured as related sequential pre-
diction problems, where the classification of one point is related to the classi-
fication of the ones right before or after it in the sequence. Such models are
common in NLP because of the sequential nature of text, and are used for tasks
like POS tagging. The Conditional Random Field (CRF) model has a learning
algorithm [6] that minimizes the regularized negative conditional log likelihood

4 http://leon.bottou.org/projects/sgd
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of the data. We used L-BFGS optimization. The regularization parameter c is
not halved like it is in the SVM formulation:

E(θ) = −
M∑
i=1

log p(yi|xi; θ) + c

K∑
i=1

θ2

We implemented three systems for orthographic syllabication of Romanian words.
The first is a simple rule-based approach which aims to implement as many of
the rules 5 for orthographic syllabication given in [4] as possible. The second
uses a linear SVM to decide what to do with every possible candidate split in
the word. The third approach uses a CRF model. The features used for the two
machine learning approaches are character n-grams.

The advantage of a sequence model over the SVM is that it has the modeling
power to jointly analyze consecutive splits, whereas the SVM is limited to local
knowledge. It is not aware of interaction between consecutive candidate splits
within a same word (e.g. the CRF can learn that it should be rare to split on
both sides of a single consonant).

3.2 Software

The software we use is the scikit-learn machine learning library for the Python
scientific computing environment version 0.12.1 [8]. The library provides efficient
text n-gram feature extraction using the sparse matrix implementation in SciPy6.
We use the SVM implementation by stochastic gradient descent.

We also used CRFsuite version 0.12 [7] for its implementation of CRF infer-
ence and training.

3.3 Dataset and preprocessing

The dataset used is based on the morphological dictionary RoMorphoDict [1],
which is available from the author and has two versions. The resource relevant
to our task provides a long list of word forms along with their hyphenated form
with accent marking. An online version of this second data resource is available
for querying at http://ilr.ro/silabisitor/.

The dataset is annotated for accent by using Unicode accented characters.
Unlike, for instance, French, in Romanian the accent is usually not written and
therefore not usually available as input, so we strip it completely. We do not strip
down to the ASCII character set though, because Romanian has the characters
ă, â, ı̂, s, , t, – these are not accented characters, but separate letters.

3.4 Features

The feature extraction consists of extracting character n-grams that form strings.
This is parametrized by the n-gram size n. For example, we will consider n = 3,

5 Also available, in Romanian, at http://ilr.ro/silabisitor/reguli.php
6 http://docs.scipy.org/doc/scipy/reference/sparse.html
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the word dinosaur and the split between o and s. The position induces two
strings, dino and saur but we are only interested in the window of radius n
around the split, so we are left with ino and sau. Since the bag-of-n-grams
features we use for the SVM loses the order, we consider adding a special marker,
obtaining ino$ and $sau. The n-grams of length up to 3 are: i, n, o, $, in, no,
o$, ino, no$ and the analogous for the right hand side. This is then vectorized
into counts, with the observation that features that occur with the frequency of
1 across all instances are obviously irrelevant and are ignored.

The vectorization produces one matrix for the left sides of the splits and
one for the right side of the splits. These are stacked horizontally to give our
data matrix. For the CRF, the feature extraction is the same, but the sparse
vectorized representation is replaced with an input like:

1 c[-3]=i c[-2]=n c[-1]=o c[-3-2]=in c[-2-1]=no c[-3-2-1]=ino

c[1]=s c[2]=a c[3]=u c[12]=sa c[23]=au c[123]=sau

The format above is the one accepted as input by CRFsuite. Because the feature
names include the offset, the dollar marker would provide no useful information.
The names could just as well be arbitrary: CRFsuite cannot understand that
c[-2-1] means the bigram just before the split, but the values that a certain
feature tends to take carry the discriminative information.

Both the SVM and the CRF were trained using `2 regularization, so we
would have another system parameter that controls the amount of regularization
applied, α. In the case of the SVM, we also investigate the difference in the results
if the boundary marker $ is used or not. These parameters are optimized using
grid search to maximize the classification accuracy of individual splits using
3-fold cross-validation over the training set.

3.5 Generating training samples

The average word in our dictionary has 9.96 characters and 4.24 syllables. This
means that each word generates around 9 training instances (possible splits), out
of which we expect around 3 to be labeled as true, and the rest as false. Prior
to generating training instances, we split the words into a training and test set,
each consisting of 262, 764 words.

For each word of length n we generate n−1 instances, corresponding to each
position between two letters of the word. Instances are labeled as positive if a
hyphen can be inserted there, or negative if not.

This tagging method is called NB labelling [2], because we label each split as
boundary (B or 1) or no boundary (N or 0). For example, the word di-a-mant
(diamond) would be encoded as:

d i a m a n t

0 1 1 0 0 0

A slightly more informative way of assigning labels, introduced also in [2], is to
use numbered NB (#NB) tags: each split is labeled with the distance from the
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Table 3: Results for hyphenation models. The scores are
evaluated on the test set. In the numbered NB case, we are
only evaluating with respect to class 0, the one marking
the position of the hyphens. Correctly identifying all tags
0−7 is not directly relevant for this application, but their
presence helps.

model n marker regularization Hyphen acc. Hyphen F1 Word acc.

Rule - - - 94.31% 92.12% 60.67%
Svm nb 4 yes α = 10−5 98.72% 98.24% 90.96%

Svm #nb 4 yes α = 10−6 98.82% 98.37% 91.46%
Crf nb 4 - c = 0.1 99.15% 98.83% 94.67%

Crf #nb 4 - c = 1.0 99.23% 98.94% 95.25%

last hyphen:

d i a m a n t

1 0 0 1 2 3

This way the class corresponding to boundaries is class 0, and classes 1, 2, ...
are all negative. We are still dealing with a classification problem, as the classes
are discrete. On our dataset the maximum class is 7. This helps if we have a
structured sequence model, because from class k the Markov chain can only
transition to class 0 or k + 1. An unstructured SVM cannot take advantage of
this.

3.6 Results

Apart from the accuracy on the test data, we looked at precision and recall scores.
All measures are relative to training instances, which correspond to splits within
words. A more tough evaluation metric is at the word level: a word is considered
correctly hyphenated if all of the splits within it were correctly classified. This
score should show the advantage of using a sequence model.

The rule-based algorithm obtained 60.67% splitting accuracy at word level
and 94.31% accuracy, within the word, at split level. The small accuracy at
word level we found to not only be influenced by the ambiguity between hiatus
and diphthongs or glide+vowel sequences, which cannot be distinguished based
on the orthographic rules, but also by the difference in vocalic status of the
word-final i, which can form a new nucleus or stay in the coda. Table 2 shows
examples of word-final i either determining a new syllable or staying in the
coda. Looking at the data relating to word-final i we see that it is not only
dependant on phonetic constraints (i.e. it is vocalic after stop+liquid) but also
on morphological ones (i.e. it is vocalic in infinitive-based forms). However, since
the system does not have access to part of speech tags, we could not refine the
rules of the algorithm any further. Because it is not a trained system, we could
evaluate the rule-based system on the entire corpus (training and test data).
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We found it to be consistent, scoring 60.66% word accuracy and 94.32% split
accuracy.

We went on to evaluate the SVM system. The hyperparameters found to
optimize it are n = 4, α = 10−5, marker=true. The grid we investigated ranged
over n ∈ {1, 2, 3, 4} and α ∈ {10−8, 10−7, 10−6, 10−5, 10−4}. For the CRF system,
we did not use marking, because the feature representation includes feature
names that encode the offsets. The space over which we looked for n is the
same, while for c we searched {0.01, 0.1, 1.0, 10.0}.

The best results and the associated parameter values are presented in Table 3.
The trained models and scripts needed to apply on new data are made available
at https://github.com/nlp-unibuc/ro-hyphen.

4 Conclusions

In this paper, we have looked at ways of detecting orthographic syllable bound-
aries, with the intent to rule over the diphthong-hiatus ambiguity which arises
when attempting to implement a rule-based algorithm for either types of syllab-
ication in Romanian. We’ve seen that this ambiguity along with status ambigu-
ity of word final i causes great drop in performance for a rule-based algorithm
(60.66% word level split accuracy vs. 94.32% split accuracy at syllable level),
but is handled very well by an SVM or CRF system, with the CRF having the
best accuracy at word level (95.25%).

The systems we used can be viewed with respect to a trade-off spectrum.
The rules in the rule-based system can take any form and they can model very
complex interactions between features. This model has the largest predictive
power, but the rules are written by hand, therefore limiting its practicality and
its performance. At the opposite end of the spectrum is the SVM classifier, which
applies a simple linear decision rule at each point within a word, looking only at
its direct context. This simple approach outperforms the rule-based system by
being trained on large amounts of data. The sequence tagger is more successful
because it exploits the data-driven advantage of the SVM, while having more
modeling power. This comes at a cost in model complexity, which influences
training and test times.
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